Article

Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars

Citation

Ming DW, Mittlefehldt DW, Morris RV, Golden DC, Gellert R, Yen AS, Clark BC, Squyres SW, Farrand WH, Ruff SW, Arvidson RE, Klingelhoefer G, McSween HY, Rodionov DS, Schröder C, de Souza Jr PA & Wang A (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research: Planets, 111 (E2), Art. No.: E02S12. https://doi.org/10.1029/2005JE002560

Abstract
Water played a major role in the formation and alteration of rocks and soils in the Columbia Hills. The extent of alteration ranges from moderate to extensive. Five distinct rock compositional classes were identified; the order for degree of alteration is Watchtower = Clovis >Wishstone = Peace > Backstay. The rover’s wheels uncovered one unusual soil (Paso Robles) that is the most S-rich material encountered. Clovis class rocks have compositions similar to Gusev plains soil but with higher Mg, Cl, and Br and lower Ca and Zn; Watchtower and Wishstone classes have high Al, Ti, and P and low Cr and Ni; Peace has high Mg and S and low Al, Na, and K; Backstay basalts have high Na and K compared to plains Adirondack basalts; and Paso Robles soil has high S and P. Some rocks are corundum-normative, indicating that their primary compositions were changed by loss and/or gain of rock-forming elements. Clovis materials consist of magnetite, nanophase ferric-oxides (npOx), hematite, goethite, Ca-phosphates, Ca- and Mg-sulfates, pyroxene, and secondary aluminosilicates. Wishstone and Watchtower rocks consist of Fe-oxides/oxyhydroxides, ilmenite, Ca-phosphate, pyroxene, feldspar, Mg-sulfates, and secondary aluminosilicates. Peace consists of magnetite, npOx, Mg- and Ca-sulfates, pyroxene, olivine, feldspar, apatite, halides, and secondary aluminosilicates. Paso Robles consists of Fe3+-, Mg-, Ca-, and other sulfates, Ca-phosphates, hematite, halite, allophane, and amorphous silica. Columbia Hills outcrops and rocks may have formed by the aqueous alteration of basaltic rocks, volcaniclastic materials, and/or impact ejecta by solutions that were rich in acid-volatile elements.

Keywords
aqueous processes; Gusev Crater; Mars

Journal
Journal of Geophysical Research: Planets: Volume 111, Issue E2

StatusPublished
Publication date28/02/2006
URLhttp://hdl.handle.net/1893/17114
PublisherAmerican Geophysical Union
ISSN2169-9097