Article

Hydrothermal origin of halogens at Home Plate, Gusev Crater

Details

Citation

Schmidt ME, Ruff SW, McCoy TJ, Farrand WH, Johnson JR, Gellert R, Ming DW, Morris RV, Cabrol NA, Lewis KW & Schröder C (2008) Hydrothermal origin of halogens at Home Plate, Gusev Crater. Journal of Geophysical Research: Planets, 113 (E6), Art. No.: E06S12. https://doi.org/10.1029/2007JE003027

Abstract
In the Inner Basin of the Columbia Hills, Gusev Crater is Home Plate, an 80 m platform of layered clastic rocks of the Barnhill class with microscopic and macroscopic textures, including a bomb sag, suggestive of a phreatomagmatic origin. We present data acquired by the Spirit Mars Exploration Rover by Alpha Particle X-Ray Spectrometer (APXS), Mössbauer Spectrometer, Miniature Thermal Emission Spectrometer (Mini- TES), and Panoramic Camera (Pancam) for the Barnhill class rocks and nearby vesicular Irvine class basalts. In major element concentrations (e.g., SiO2, Al2O3, MgO, and FeO*), the two rock classes are similar, suggesting that they are derived from a similar magmatic source. The Barnhill class, however, has higher abundances of Cl, Br, Zn, and Ge with comparable SO3 to the Irvine basalts. Nanophase ferric oxide (np ox) and volcanic glass were detected in the Barnhill class rocks by Mössbauer and Mini-TES, respectively, and imply greater alteration and cooling rates in the Barnhill than in the Irvine class rocks. The high volatile elements in the Barnhill class agree with volcanic textures that imply interaction with a briny groundwater during eruption and (or) by later alteration. Differences in composition between the Barnhill and Irvine classes allow the fingerprinting of a Na-Mg-Zn-Ge-Cl-Br (±Fe ± Ca ± CO2) brine with low S. Nearby sulfate salt soils of fumarolic origin may reflect fractionation of an acidic S-rich vapor during boiling of a hydrothermal brine at depth. Persistent groundwater was likely present during and after the formation of Home Plate.

Keywords
Mars; geochemistry; Spirit

Journal
Journal of Geophysical Research: Planets: Volume 113, Issue E6

StatusPublished
Publication date19/06/2008
URLhttp://hdl.handle.net/1893/17122
PublisherAmerican Geophysical Union
ISSN2169-9097

People (1)

People

Dr Christian Schroeder

Dr Christian Schroeder

Senior Lecturer, Biological and Environmental Sciences