Article

The Response To, and Recovery From Maximum Strength and Power Training in Elite Track and Field Athletes

Details

Citation

Howatson G, Brandon R & Hunter A (2016) The Response To, and Recovery From Maximum Strength and Power Training in Elite Track and Field Athletes. International Journal of Sports Physiology and Performance, 11 (3), pp. 356-362. https://doi.org/10.1123/ijspp.2015-0235

Abstract
There is a great deal of research on the responses to resistance training; however, information on the responses to strength and power training conducted by elite strength and power athletes is sparse. Purpose: To establish the acute and 24 hour neuromuscular and kinematic responses to Olympic-style barbell strength and power exercise in elite athletes. Methods: Ten elite track and field athletes completed a series of 3 back squat exercises each consisted of 4 x 5 repetitions. These were done as either strength or power sessions on separate days. Surface electromyography (sEMG), bar velocity and knee angle was monitored throughout these exercises and maximal voluntary contraction (MVC), jump height, central activation ratio (CAR) and lactate were measured pre, post and 24 hours thereafter. Results: Repetition duration, impulse and total work were greater (p<0.01) during strength sessions, with mean power being greater (p<0.01) following the power sessions. Lactate increased (p<0.01) following strength but not power sessions. sEMG increased (p<0.01) across sets for both sessions, with the strength session increasing at a faster rate (p<0.01) and with greater activation (p<0.01) by the end of the final set . MVC declined (p<0.01) following the strength and not the power session, which remained suppressed (p<0.05) 24 hours later; whereas CAR and jump height remained unchanged. Conclusion: A greater neuromuscular and metabolic demand following the strength and not power session is evident in elite athletes, which impaired maximal force production up to 24 hours. This is an important consideration for planning concurrent athletic training.

Keywords
fatigue; performance; neuromuscular

Journal
International Journal of Sports Physiology and Performance: Volume 11, Issue 3

StatusPublished
Publication date30/04/2016
Publication date online08/2015
Date accepted by journal01/08/2015
URLhttp://hdl.handle.net/1893/23892
PublisherHuman Kinetics
ISSN1555-0265

People (1)

People

Professor Angus Hunter

Professor Angus Hunter

Honorary Professor, FHSS Management and Support