Skip header navigation

University of Stirling

×

Article

Effects of different photoperiod regimes on the smoltification and seawater adaptation of seawater-farmed rainbow trout (Oncorhynchus mykiss): Insights from Na+, K+-ATPase activity and transcription of osmoregulation and growth regulation genes

Citation
Morro B, Balseiro P, Albalat a, Pedrosa C, Mackenzie S, Nakamura S, Shimizu M, Nilsen TO, Sveier H, Ebbesson LO & Handeland SO (2019) Effects of different photoperiod regimes on the smoltification and seawater adaptation of seawater-farmed rainbow trout (Oncorhynchus mykiss): Insights from Na+, K+-ATPase activity and transcription of osmoregulation and growth regulation genes. Aquaculture, 507, pp. 282-292. https://doi.org/10.1016/j.aquaculture.2019.04.039

Abstract
Photoperiod is thought to be the main zeitgeber that induces smoltification in salmonids. However, its effects on the smoltification of rainbow trout (Oncorhynchus mykiss) are not fully understood and no published data documents the effects of the photoperiod regime currently used commercially, continuous light (LL). The present study compared the effect of four different photoperiod regimes (i.e. advanced phase photoperiod (APP), delayed phase photoperiod (DPP), LL and simulated natural photoperiod (SNP)) on the smoltification and growth of juvenile rainbow trout during their freshwater phase of winter-spring and the following summer post smolt phase. Smoltification was evaluated by monitoring gill Na+,K+–ATPase (NKA) activity and transcription of NKA α-subunit isoforms 1a and 1b, and Na+,K+,2Cl− cotransporter 1a. Growth was measured as specific growth rate of both length and weight, and through molecular growth proxies such as the levels of circulating insulin-like growth factor 1 (IGF-I) in plasma and transcription of igf-I, igf binding protein 1b (igfbp1b), growth hormone receptor 1 (ghr1) and cathepsin L (ctsl) in the liver. Results indicate that APP induces a longer smolt window and higher levels of plasma IGF-I in both freshwater and seawater (two months post transfer), while DPP led to a shorter smolt window, lower plasma IGF-I levels in freshwater and seawater, an earlier decrease in liver igf-I and ctsl transcription in freshwater (as seen by modelling over time) and lower specific growth rate in freshwater. The transcription analysis of osmoregulatory genes complemented NKA activity and allowed for the detection of a transient response to light and of differences between the osmoregulatory capacity of parr and desmolted fish. Furthermore, an upregulation of the liver transcription of igf-I, ghr1 and ctsl was found in all treatments during the smolt window, which corresponded to the periods with highest growth. Finally, both plasma IGF-I and liver igf-I in seawater were found to be significantly correlated to fish growth in seawater. However, our data did not show that plasma IGF-I prior to seawater transfer could be used as a reliable predictor of growth in seawater. Overall, and especially when compared with other salmonid species, photoperiod seems to be a weaker inducer of smoltification in rainbow trout, according to the parameters that were tested, suggesting that other environmental cues might be more important drivers of this process.

Keywords
Insulin-like growth factor 1; nkaα1; nkcc1a; Sodium–potassium pump; Steelhead trout; Winter signal

Journal
Aquaculture: Volume 507

StatusPublished
Author(s)Morro, Bernat; Balseiro, Pablo; Albalat, aAmaya; Pedrosa, Cindy; Mackenzie, Simon; Nakamura, Shu; Shimizu, Munetaka; Nilsen, Tom O; Sveier, Harald; Ebbesson, Lars O; Handeland, Sigurd O
FundersRegionale Foskningsfond Vestalandet
Publication date30/05/2019
Publication date online15/04/2019
Date accepted by journal11/04/2019
URLhttp://hdl.handle.net/1893/29330
PublisherElsevier BV
ISSN0044-8486
Scroll back to the top