Article

Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion

Details

Citation

Chapman DS, Makra L, Albertini R, Bonini M, Páldy A, Rodinkova V, Šikoparija B, Weryszko-Chmielewska E & Bullock JM (2016) Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion. Global Change Biology, 22 (9), pp. 3067-3079. https://doi.org/10.1111/gcb.13220

Abstract
Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non-native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long-distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion risk and provide useful guidance for management strategies to reduce the impacts of invasion.

Keywords
bioeconomic model; biosecurity; colonization; colonisation; dispersal; introduced species; invasive alien species; plant health; trade pathway model

Journal
Global Change Biology: Volume 22, Issue 9

StatusPublished
FundersEuropean Commission
Publication date30/07/2016
Publication date online08/01/2016
Date accepted by journal23/11/2015
URLhttp://hdl.handle.net/1893/28792
PublisherJohn Wiley & Sons, Ltd (10.1111)
ISSN1354-1013

People (1)

People

Dr Daniel Chapman

Dr Daniel Chapman

Senior Lecturer, Biological and Environmental Sciences