Article

Re-shaping models of E.coli population dynamics in livestock faeces: Increased bacterial risk to humans?

Details

Citation

Oliver D, Page T, Heathwaite AL & Haygarth PM (2010) Re-shaping models of E.coli population dynamics in livestock faeces: Increased bacterial risk to humans?. Environment International, 36 (1), pp. 1-7. http://www.sciencedirect.com/science/journal/01604120; https://doi.org/10.1016/j.envint.2009.08.006

Abstract
Dung-pats excreted directly on pasture from grazing animals can contribute a significant burden of faecal microbes to agricultural land. The aim of this study was to use a combined field and modelling approach to determine the importance of Escherichia coli growth in dung-pats when predicting faecal bacteria accumulation on grazed grassland. To do this an empirical model was developed to predict the dynamics of an E. coli reservoir within 1 ha plots each grazed by four beef steers for six months. Published first-order die-off coefficients were used within the model to describe the expected decline of E. coli in dung-pats. Modelled estimates using first-order kinetics led to an underestimation of the observed E. coli land reservoir, when using site-specific die-off coefficients. A simultaneous experiment determined the die-off profiles of E. coli within fresh faeces of beef cattle under field relevant conditions and suggested that faecal bacteria may experience growth and re-growth in the period post defecation when exposed to a complex interaction of environmental drivers such as variable temperature, UV radiation and moisture levels. This growth phase in dung-pats is not accounted for in models based on first-order die-off coefficients. When the model was amended to incorporate the growth of E. coli, equivalent to that observed in the field study, the prediction of the E. coli reservoir was improved with respect to the observed data and produced a previously unquantified step-change improvement in model predictions of the accumulation of these faecal bacteria on grasslands. Results from this study suggest that the use of first-order kinetic equations for determining land-based reservoirs of faecal bacteria should be approached with caution and greater emphasis placed on accounting for actual survival patterns observed under field relevant conditions.

Keywords
die-off; E. coli; growth; health; pathogen; cattle faeces; grazing; soil; Grassland ecology; Escherichia coli

Journal
Environment International: Volume 36, Issue 1

StatusPublished
Publication date31/01/2010
URLhttp://hdl.handle.net/1893/2857
PublisherElsevier
Publisher URLhttp://www.sciencedirect.com/science/journal/01604120
ISSN0160-4120

People (1)

People

Professor David Oliver

Professor David Oliver

Professor, Biological and Environmental Sciences