Article

Effects of water temperature and diets containing palm oil on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes of rainbow trout (Oncorhynchus mykiss)

Details

Citation

Tocher DR, Fonseca-Madrigal J, Dick JR, Ng W, Bell JG & Campbell P (2004) Effects of water temperature and diets containing palm oil on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology, 137 (1), pp. 49-63. https://doi.org/10.1016/j.cbpc.2003.10.002

Abstract
Food grade fisheries have reached their sustainable limits while aquaculture production has increased to meet consumer demands. However, for growth in aquaculture to continue and utilise sustainable, feeding ingredients, alternatives to fish oil (FO), the predominant lipid component of fish diets, must be developed. Therefore, there is currently considerable interest in the regulation of fatty acid metabolism in fish in order to determine strategies for the best use of plant oils in diets for commercially important cultured fish species. Plant oils are characteristically rich in C18 polyunsaturated fatty acids (PUFA) but devoid of C20 and C22 highly unsaturated fatty acids (HUFA) found in FO. The fatty acyl desaturase enzyme activities involved in the biosynthesis of HUFA from PUFA are known to be under nutritional regulation and can be increased in fish fed diets rich in plant oils. However, fatty acid desaturase activity is also known to be modulated by water temperature in fish. The present study aimed to investigate the interaction between water temperature and diet in the regulation of fatty acid metabolism in rainbow trout. Trout, acclimatized to 7, 11 or 15 °C, were fed for 4 weeks on diets in which the FO was replaced in a graded manner by palm oil. At the end of the trial, fatty acyl desaturation/elongation and β-oxidation activities were determined in isolated hepatocytes and intestinal enterocytes using [1-14C]18:3n-3 as substrate, and samples of liver were collected for analysis of lipid and fatty acid composition. The most obvious effect of temperature was that fatty acid desaturation/elongation and β-oxidation were reduced in both hepatocytes and intestinal enterocytes from fish maintained at the highest water temperature (15 °C). There were differences between the two tissues with the highest desaturation/elongation and β-oxidation activities tending to be in fish held at 11 °C in the case of hepatocytes, but 7 °C in enterocytes. Correlations between fatty acid metabolism and dietary palm oil were most clearly observed in desaturation/elongation activities in both hepatocytes and enterocytes at 11 °C. The highest β-oxidation activities were generally observed in fish fed FO alone in both hepatocytes and enterocytes with palm oil having differential effects in the two cell types.

Keywords
desaturation; enterocytes; hepatocytes; beta-oxidation; palm oil; polyunsaturated fatty acids; rainbow trout

Journal
Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology: Volume 137, Issue 1

StatusPublished
Publication date31/01/2004
URLhttp://hdl.handle.net/1893/7633
PublisherElsevier
ISSN1096-4959

People (2)

People

Professor Gordon Bell

Professor Gordon Bell

Emeritus Professor, Institute of Aquaculture

Mr James Dick

Mr James Dick

Technical Manager