Skip header navigation

University of Stirling

×

Article

Myostatin levels in skeletal muscle of hibernating ground squirrels

Citation
Brooks N, Myburgh KH & Storey KB (2011) Myostatin levels in skeletal muscle of hibernating ground squirrels. Journal of Experimental Biology, 214 (15), pp. 2522-2527. https://doi.org/10.1242/jeb.055764

Abstract
Myostatin, a negative regulator of muscle mass, is elevated during disuse and starvation. Mammalian hibernation presents a unique scenario, where animals are hypocaloric and in torpor, but the extent of muscle protein loss is minimized. We hypothesized that myostatin expression, which is usually increased early in disuse and under hypocaloric conditions, could be suppressed in this unique model. Skeletal muscle was collected from thirteen-lined ground squirrels, Spermophilus tridecemlineatus, at six time points during hibernation: control euthermic (CON); entrance into hibernation (ENT), body temperature (Tb) falling; early hibernation (EHib), stable Tb in torpor for 24 h; late hibernation (LHib), stable Tb in torpor for 3 days; early arousal (EAr), Tb rising; and arousal (AR), Tb restored to 34-37°C for about 18 h. There was no significant increase of myostatin during ENT, EHib or LHib. Unexpectedly, there were approximately sixfold increases in myostatin protein levels as squirrels arose from torpor. The elevation during EAr remained high in AR, which represented an interbout time period. Mechanisms that could release the suppression or promote increased levels of myostatin were assessed. SMAD2 and phosphorylated SMAD2 were increased during EHib, but only the phosphorylated SMAD2 during AR mirrored increases in myostatin. Follistatin, a negative regulator of myostatin, did not follow the same time course as myostatin or its signaling pathway, indicating more control of myostatin at the signaling level. However, SMAD7, an inhibitory SMAD, did not appear to play a significant role during deep hibernation. Hibernation is an excellent natural model to study factors involved in the endogenous intracellular mechanisms controlling myostatin.

Keywords
hibernation; myostatin; skeletal muscle

Journal
Journal of Experimental Biology: Volume 214, Issue 15

StatusPublished
Author(s)Brooks, Naomi; Myburgh, Kathryn H; Storey, Kenneth B
Publication date31/08/2011
Publication date online13/07/2011
Date accepted by journal19/04/2011
URLhttp://hdl.handle.net/1893/22614
PublisherThe Company of Biologists
ISSN0022-0949
Scroll back to the top