Skip header navigation

University of Stirling

×

Article

Elimination of electrically induced iontophoretic artefacts: Implications for non-invasive assessment of peripheral microvascular function

Citation
Ferrell WR, Ramsay JE, Brooks N, Lockhart JC, Dickson S, McNeece GM, Greer IA & Sattar N (2002) Elimination of electrically induced iontophoretic artefacts: Implications for non-invasive assessment of peripheral microvascular function. Journal of Vascular Research, 39 (5), pp. 447-455. https://doi.org/10.1159/000064515

Abstract
Iontophoretic assessment of skin microvascular function is complicated by the occurrence of electrically induced hyperaemia, especially at the cathode. Studies were performed to identify means of reducing such effects. Skin vasodilator responses were measured using a laser Doppler imager that controlled iontophoretic current delivery. A novel feature involved monitoring voltage across the iontophoresis chambers. Comparison between responses to vehicle (distilled H2O), acetylcholine (ACh) and sodium nitroprusside (SNP) showed electrically induced hyperaemia at the cathode associated with the vehicle, whose time course overlapped with that of the SNP response. Voltage across the chambers containing drugs dissolved in H2O was significantly (p = 0.018, n = 7) lower than the voltage profile of H2O alone. H2O iontophoresis was associated with cathodal hyperaemic responses in most subjects, whereas a 0.5% NaCl vehicle produced lower voltages and eliminated this artefact. Voltage·time integral rather than charge was the prime determinant of electrically induced hyperaemic responses. No significant correlation was found between skin fold thickness and either calculated skin resistance (r2 = 0.0002) or vascular response to ACh (r2 = 0.13). Smaller chamber size led to higher voltages and greater electrically induced hyperaemic responses. These appear to be prostaglandin dependent as they were ablated by cyclooxygenase inhibition. Use of a low-resistance vehicle combined with larger chamber sizes and lower currents can prevent such artefacts, thereby increasing the robustness of this methodology for clinical assessment of endothelial function.

Keywords
Iontophoresis; Laser Doppler imaging; Galvanic response; Electrically induced hyperaemia; Endothelium; Acetylcholine; Sodium nitroprusside; Prostaglandins; Vasodilatation; Resistance; Muscle strength

Journal
Journal of Vascular Research: Volume 39, Issue 5

StatusPublished
Author(s)Ferrell, William R; Ramsay, Jane Elizabeth; Brooks, Naomi; Lockhart, John C; Dickson, Sylvia; McNeece, Grainne M; Greer, Ian A; Sattar, Naveed
Publication date30/09/2002
URLhttp://hdl.handle.net/1893/12178
PublisherKarger
ISSN1018-1172
Scroll back to the top