Skip header navigation

University of Stirling

×

Article

Line orientation adaptation: local or global?

Citation
Gheorghiu E, Bell J & Kingdom FAA (2013) Line orientation adaptation: local or global?. PLoS ONE, 8 (8), Art. No.: e73307. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0073307; https://doi.org/10.1371/journal.pone.0073307

Abstract
Prolonged exposure to an oriented line shifts the perceived orientation of a subsequently observed line in the opposite direction, a phenomenon known as the tilt aftereffect (TAE). Here we consider whether the TAE for line stimuli is mediated by a mechanism that integrates the local parts of the line into a single global entity prior to the site of adaptation, or the result of the sum of local TAEs acting separately on the parts of the line. To test between these two alternatives we used the fact the TAE transfers almost completely across luminance contrast polarity [1]. We measured the TAE using adaptor and test lines that (1) either alternated in luminance polarity or were of a single polarity, and (2) either alternated in local orientation or were of a single orientation. We reasoned that if the TAE was agnostic to luminance polarity and was parts-based, we should obtain large TAEs using alternating-polarity adaptors with single-polarity tests. However we found that (i) TAEs using one-alternating-polarity adaptors with all-white tests were relatively small, increased slightly for two-alternating-polarity adaptors, and were largest with all-white or all-black adaptors. (ii) however TAEs were relatively large when the test was one-alternating polarity, irrespective of the adaptor type. (iii) The results with orientation closely mirrored those obtained with polarity with the difference that the TAE transfer across orthogonal orientations was weak. Taken together, our results demonstrate that the TAE for lines is mediated by a global shape mechanism that integrates the parts of lines into whole prior to the site of orientation adaptation. The asymmetry in the magnitude of TAE depending on whether the alternating-polarity lines was the adaptor or test can be explained by an imbalance in the population of neurons sensitive to 1st-and 2nd-order lines, with the 2nd-order lines being encoded by a subset of the mechanisms sensitive to 1st-order lines.

Journal
PLoS ONE: Volume 8, Issue 8

StatusPublished
Author(s)Gheorghiu, Elena; Bell, Jason; Kingdom, Frederick A A
Publication date30/08/2013
Date accepted by journal19/07/2013
URLhttp://hdl.handle.net/1893/18318
PublisherPublic Library of Science
Publisher URLhttp://www.plosone.org/…nal.pone.0073307
Scroll back to the top