Article

Dietary effects on insulin and glucagon plasma levels in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata)

Citation

Rojas P, Albalat A, Santigosa E, Perez-Sanchez J, Kaushik S, Gutierrez J & Navarro I (2009) Dietary effects on insulin and glucagon plasma levels in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata). Aquaculture Nutrition, 15 (2), pp. 166-176. https://doi.org/10.1111/j.1365-2095.2008.00580.x

Abstract
The effects of dietary amino acid profile (based on muscle (M) or whole body composition (WB) and the balance between indispensable (IAA) and dispensable amino acids (DAA) in the diet, on plasma levels of insulin and glucagon, were analysed in rainbow trout and gilthead sea bream. Plasma insulin values (baseline and 6 h postfeeding) were higher in trout than in sea bream, but the relative postfeeding increase was more pronounced in sea bream. Within the same dietary amino acid profile, diets with lower IAA/DAA, had a lower effect on the postfeeding secretion of insulin in both species. Circulating levels of glucagon (baseline and postfeeding relative increases) were higher in sea bream. In trout, diets with WB amino acid profile had a greater secretory effect on postfeeding glucagon than did diets with M profile, while gilthead sea bream showed an inverse response to circulating glucagon with respect to diet. Muscle insulin and insulin growth factor-I binding parameters were not affected by the dietary regimen. The postfeeding glucagon response depends on both the dietary AA profile and the fish species, while that of insulin seems to be more uniform, and is affected in a similar way regardless of the species.

Keywords
The effects of dietary amino acid profile (based on muscle (M) or whole body composition (WB) and the balance between indispensable (IAA) and dispensable amino acids (DAA) in the diet, on plasma levels of insulin and glucagon, were analysed in rainbow trout and gilthead sea bream. Plasma insulin values (baseline and 6 h postfeeding) were higher in trout than in sea bream, but the relative postfeeding increase was more pronounced in sea bream. Within the same dietary amino acid profile, diets with lower IAA/DAA, had a lower effect on the postfeeding secretion of insulin in both species. Circulating levels of glucagon (baseline and postfeeding relative increases) were higher in sea bream. In trout, diets with WB amino acid profile had a greater secretory effect on postfeeding glucagon than did diets with M profile, while gilthead sea bream showed an inverse response to circulating glucagon with respect to diet. Muscle insulin and insulin growth factor-I binding parameters were not affected by the dietary regimen. The postfeeding glucagon response depends on both the dietary AA profile and the fish species, while that of insulin seems to be more uniform, and is affected in a similar way regardless of the species.

Journal
Aquaculture Nutrition: Volume 15, Issue 2

StatusPublished
Publication date30/04/2009
PublisherWiley-Blackwell
ISSN1353-5773