Skip header navigation
×

Conference Proceeding

Approaches to selection and their effect on fitness modelling in an Estimation of Distribution Algorithm

Citation
Brownlee A, McCall J, Zhang Q & Brown DF (2008) Approaches to selection and their effect on fitness modelling in an Estimation of Distribution Algorithm. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), Hong Kong, 01.06.2008-06.06.2008. IEEE, pp. 2621-2628. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4631150&abstractAccess=no&userType=inst; https://doi.org/10.1109/CEC.2008.4631150

Abstract
Selection is one of the defining characteristics of an evolutionary algorithm, yet inherent in the selection process is the loss of some information from a population. Poor solutions may provide information about how to bias the search toward good solutions. Many estimation of distribution algorithms (EDAs) use truncation selection which discards all solutions below a certain fitness, thus losing this information. Our previous work on distribution estimation using Markov networks (DEUM) has described an EDA which constructs a model of the fitness function; a unique feature of this approach is that because selective pressure is built into the model itself selection becomes optional. This paper outlines a series of experiments which make use of this property to examine the effects of selection on the population. We look at the impact of selecting only highly fit solutions, only poor solutions, selecting a mixture of highly fit and poor solutions, and abandoning selection altogether. We show that in some circumstances, particularly where some information about the problem is already known, selection of the fittest only is suboptimal.

StatusPublished
Author(s)Brownlee, Alexander; McCall, John; Zhang, Qingfu; Brown, Deryck F
Publication date31/12/2008
Publication date online30/06/2008
Related URLshttp://www2.mae.cuhk.edu.hk/~wcci2008/
PublisherIEEE
Publisher URLhttp://ieeexplore.ieee.org/…no&userType=inst
ISBN978-1-4244-1822-0
ConferenceIEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence)
Conference locationHong Kong
Dates
Scroll back to the top