Article

Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth

Details

Citation

Abboudi M, Matallana-Surget S, Rontani J, Sempéré R & Joux F (2008) Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth. Current Microbiology, 57 (5), pp. 412-417. https://doi.org/10.1007/s00284-008-9214-9

Abstract
Growth experiments on the marine bacterium Vibrio angustum S14 were conducted under four light conditions using a solar simulator: visible light (V), V + ultraviolet A (UV-A), V + UV-A + UV-B radiation, and dark. Growth was inhibited mainly by UV-B and slightly by UV-A. UV-B radiation induced filaments containing multiple genome copies with low cyclobutane pyrimidine dimers. These cells did not show modifications in cellular fatty acid composition in comparison with dark control cultures and decreased in size by division after subsequent incubation in the dark. A large portion of the bacterial population grown under visible light showed an alteration in cellular DNA fluorescence as measured by flow cytometry after SYBR-Green I staining. This alteration was not aggravated by UV-A and was certainly due to a change in DNA topology rather than DNA deterioration because all the cells remained viable and their growth was not impaired. Ecological consequences of these observations are discussed.

Keywords
UV-B radiation; fatty acid composition; escherichia coli; DNA; phytoplankton; sea; starvation; responses; cells; life

Journal
Current Microbiology: Volume 57, Issue 5

StatusPublished
Publication date30/11/2008
Publication date online04/09/2008
Date accepted by journal04/06/2008
URLhttp://hdl.handle.net/1893/24692
PublisherSpringer
ISSN0343-8651

People (1)

People

Dr Sabine Matallana-Surget

Dr Sabine Matallana-Surget

Associate Professor, Biological and Environmental Sciences