Article

Nutritional regulation of long-chain PUFA biosynthetic genes in rainbow trout (Oncorhynchus mykiss)

Details

Citation

Gregory M, Collins RO, Tocher DR, James M & Turchini GM (2016) Nutritional regulation of long-chain PUFA biosynthetic genes in rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition, 115, pp. 1721-1729. https://doi.org/10.1017/S0007114516000830

Abstract
Most studies on dietary vegetable oil in rainbow trout (Oncorhynchus mykiss) have been conducted on a background of dietary EPA (20 : 5n-3) and DHA (22 : 6n-3) contained in the fishmeal used as a protein source in aquaculture feed. If dietary EPA and DHA repress their endogenous synthesis from α-linolenic acid (ALA, 18 : 3n-3), then the potential of ALA-containing vegetable oils to maintain tissue EPA and DHA has been underestimated. We examined the effect of individual dietary n-3 PUFA on the expression of the biosynthetic genes required for metabolism of ALA to DHA in rainbow trout. A total of 720 juvenile rainbow trout were allocated to twenty-four experimental tanks and assigned one of eight diets. The effect of dietary ALA, EPA or DHA, in isolation or in combination, on hepatic expression of fatty acyl desaturase (FADS)2a(Δ6), FADS2b(Δ5), elongation of very long-chain fatty acid (ELOVL)5 and ELOVL2 was examined after 3 weeks of dietary intervention. The effect of these diets on liver and muscle phospholipid PUFA composition was also examined. The expression levels of FADS2a(Δ6), ELOVL5 and ELOVL2 were highest when diets were high in ALA, with no added EPA or DHA. Under these conditions ALA was readily converted to tissue DHA. Dietary DHA had the largest and most consistent effect in down-regulating the gene expression of all four genes. The ELOVL5 expression was the least responsive of the four genes to dietary n-3 PUFA changes. These findings should be considered when optimising aquaculture feeds containing vegetable oils and/or fish oil or fishmeal to achieve maximum DHA synthesis.

Keywords
Desaturase; DHA; Elongase; n-3 Fatty acids; PUFA

Journal
British Journal of Nutrition: Volume 115

StatusPublished
Publication date15/02/2016
Publication date online18/03/2016
Date accepted by journal15/02/2016
URLhttp://hdl.handle.net/1893/25460
PublisherCambridge Journals, Cambridge University Press
ISSN0007-1145