Conference Proceeding
Details
Citation
Adair J, Brownlee A & Ochoa G (2016) Evolutionary Algorithms with Linkage Information for Feature Selection in Brain Computer Interfaces. In: Angelov P, Gegov A, Jayne C & Shen Q (eds.) Advances in Computational Intelligence Systems: Contributions Presented at the 16th UK Workshop on Computational Intelligence, September 7–9, 2016, Lancaster, UK. Advances in Intelligent Systems and Computing, 513. UKCI 2016 - 16th UK Workshop on Computational Intelligence, Lancaster, 07.09.2016-09.09.2016. London: Springer, pp. 287-307. https://doi.org/10.1007/978-3-319-46562-3_19
Abstract
Abstract Brain Computer Interfaces are an essential technology for the advancement of prosthetic limbs, but current signal acquisition methods are hindered by a number of factors, not least, noise. In this context, Feature Selection is required to choose the important signal features and improve classifier accuracy. Evolutionary algorithms have proven to outperform filtering methods (in terms of accuracy) for Feature Selection. This paper applies a single-point heuristic search method, Iterated Local Search (ILS), and compares it to a genetic algorithm (GA) and a memetic algorithm (MA). It then further attempts to utilise Linkage between features to guide search operators in the algorithms stated. The GA was found to outperform ILS. Counter-intuitively, linkage-guided algorithms resulted in higher classification error rates than their unguided alternatives. Explanations for this are explored.
Keywords
evolutionary search; brain computer interfaces; Iterated Local Search; Genetic Algorithms; Feature Selection; Intelligent Operators; feature selection; memetic algorithms; linkage score; linkage detection algorithms; epistasis; eeg; prosthetics
Status | Published |
---|---|
Title of series | Advances in Intelligent Systems and Computing |
Number in series | 513 |
Publication date | 07/09/2016 |
Publication date online | 30/09/2016 |
URL | http://hdl.handle.net/1893/24559 |
Publisher | Springer |
Place of publication | London |
ISSN of series | 2194-5357 |
ISBN | 978-3-319-46561-6 |
eISBN | 978-3-319-46562-3 |
Conference | UKCI 2016 - 16th UK Workshop on Computational Intelligence |
Conference location | Lancaster |
Dates | – |
People (3)
Lecturer in Data Science, Computing Science
Senior Lecturer in Computing Science, Computing Science and Mathematics - Division
Professor, Computing Science