Article

Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback

Details

Citation

Jump AS, Ruiz-Benito P, Greenwood S, Allen CD, Kitzberger T, Fensham R, Martínez‐Vilalta J & Lloret F (2017) Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Global Change Biology, 23 (9), pp. 3742-3757. https://doi.org/10.1111/gcb.13636

Abstract
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, since trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of above-ground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period, and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. Since climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus over-built during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes to forest distribution and function from regional to global scales.

Keywords
Climate change; forest dynamics; drought; mortality; extreme events

Journal
Global Change Biology: Volume 23, Issue 9

StatusPublished
FundersThe Leverhulme Trust and Zurich-Basel Plant Science Center
Publication date30/09/2017
Publication date online03/03/2017
Date accepted by journal26/12/2016
URLhttp://hdl.handle.net/1893/24830
PublisherWiley-Blackwell
ISSN1354-1013

People (2)

People

Dr Sarah Greenwood

Dr Sarah Greenwood

Lecturer in Global Change Biology, Biological and Environmental Sciences

Professor Alistair Jump

Professor Alistair Jump

Dean of Natural Sciences, NS Management and Support

Projects (1)