Skip header navigation

University of Stirling

×

Article

Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip

Citation
Wei D, Sun J, Bolderson J, Zhong M, Dalby MJ, Cusack M, Yin H, Fan H & Zhang X (2017) Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip. ACS Applied Materials and Interfaces, 9 (17), pp. 14606-14617. https://doi.org/10.1021/acsami.7b00078

Abstract
Engineering three-dimensional (3D) scaffolds with in vivo like architecture and function has shown great potential for tissue regeneration. Here we developed a facile microfluidic-based strategy for the continuous fabrication of cell-laden microfibers with hierarchically organized architecture. We show that photolithographically fabricated microfluidic devices offer a simple and reliable way to create anatomically inspired complex structures. Furthermore, the use of photo-cross-linkable methacrylated alginate allows modulation of both the mechanical properties and biological activity of the hydrogels for targeted applications. Via this approach, multilayered hollow microfibers were continuously fabricated, which can be easily assembled in situ, using 3D printing, into a larger, tissue-like construct. Importantly, this biomimetic approach promoted the development of phenotypical functions of the target tissue. As a model to engineer a complex tissue construct, osteon-like fiber was biomimetically engineered, and enhanced vasculogenic and osteogenic expression were observed in the encapsulated human umbilical cord vein endothelial cells and osteoblast-like MG63 cells respectively within the osteon fibers. The capability of this approach to create functional building blocks will be advantageous for bottom-up regeneration of complex, large tissue defects and, more broadly, will benefit a variety of applications in tissue engineering and biomedical research.

Keywords
biofabrication; cell-laden hydrogel; microfluidic; microscale tissue engineering; osteon-like

Journal
ACS Applied Materials and Interfaces: Volume 9, Issue 17

StatusPublished
Author(s)Wei, Dan; Sun, Jing; Bolderson, Jason; Zhong, Meiling; Dalby, Matthew John; Cusack, Maggie; Yin, Huabing; Fan, Hongsong; Zhang, Xingdong
Publication date31/05/2017
Publication date online03/02/2017
Date accepted by journal03/02/2017
URLhttp://hdl.handle.net/1893/25067
PublisherACS Publications
ISSN1944-8244
Scroll back to the top