Simulated climate change, epidemic size, and host evolution across host-parasite populations

Alternative title Climate change and disease eco-evolution


Auld SKJR & Brand J (2017) Simulated climate change, epidemic size, and host evolution across host-parasite populations [Climate change and disease eco-evolution]. Global Change Biology, 23 (12), pp. 5045-5053.

Climate change is causing warmer and more variable temperatures as well as physical flux in natural populations, which will affect the ecology and evolution of infectious disease epidemics. Using replicate semi-natural populations of a coevolving freshwater invertebrate-parasite system (host: Daphnia magna, parasite: Pasteuria ramosa), we quantified the effects of ambient temperature and population mixing (physical flux within populations) on epidemic size and population health. Each population was seeded with an identical suite of host genotypes and dose of parasite transmission spores. Biologically reasonable increases in environmental temperature caused larger epidemics, and population mixing reduced overall epidemic size. Mixing also had a detrimental effect on host populations independent of disease. Epidemics drove parasite-mediated selection, leading to a loss of host genetic diversity, and mixed populations experienced greater evolution due to genetic drift over the season. These findings further our understanding of how diversity loss will reduce the host populations’ capacity to respond to changes in selection, therefore stymying adaptation to further environmental change.

global warming; disease ecology; eco-evolutionary dynamics; mesocosms; parasitism

Global Change Biology: Volume 23, Issue 12

FundersNatural Environment Research Council
Publication date31/12/2017
Publication date online22/05/2017
Date accepted by journal15/05/2017