Technical Report

Relating Training Instances to Automatic Design of Algorithms for Bin Packing via Features (Detailed Experiments and Results)



Brownlee A, Woodward JR & Veerapen N (2018) Relating Training Instances to Automatic Design of Algorithms for Bin Packing via Features (Detailed Experiments and Results). Not applicable. Stirling: University of Stirling.

Automatic Design of Algorithms (ADA) shifts the burden of algorithm choice and design from developer to machine. Constructing an appropriate solver from a set of problem instances becomes a machine learning problem, with instances as training data. An efficient solver is trained for unseen problem instances with similar characteristics to those in the training set. However, this paper reveals that, as with classification and regression, for ADA not all training sets are equally valuable. We apply a typical genetic programming ADA approach for bin packing problems to several new and existing public benchmark sets. Algorithms trained on some sets are general and apply well to most others, whereas some training sets result in highly specialised algorithms that do not generalise. We relate these findings to features (simple metrics) of instances. Using instance sets with narrowly-distributed features for training results in highly specialised algorithms, whereas those with well-spread features result in very general algorithms. We show that variance in certain features has a strong correlation with the generality of the trained policies. Our results provide further grounding for recent work using features to predict algorithm performance, and show the suitability of particular instance sets for training in ADA for bin packing. The data sets, including all computed features, the evolved policies, and their performances, and the visualisations for all feature sets, are available from

Automatic design of algorithms; features; bin packing

Work funded by UK EPSRC [grants EP/N002849/1, EP/J017515/1]. Results obtained using the EPSRC funded ARCHIE-WeSt HPC [EPSRC grant EP/K000586/1].

FundersEngineering and Physical Sciences Research Council and Engineering and Physical Sciences Research Council
Publication date07/04/2018
Publication date online07/04/2018
Related URLs
PublisherUniversity of Stirling
Place of publicationStirling

People (1)


Dr Sandy Brownlee

Dr Sandy Brownlee

Senior Lecturer in Computing Science, Computing Science and Mathematics - Division