Article
Details
Citation
Souza AP, Oliveira BA, Andrade ML, Starling MCVM, Pereira AH, Maillard P, Nogueira K, dos Santos JA & Amorim CC (2023) Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs. Science of The Total Environment, 902, Art. No.: 165964. https://doi.org/10.1016/j.scitotenv.2023.165964
Abstract
Monitoring water quality in reservoirs is essential for the maintenance of aquatic ecosystems and socioeconomic services. In this scenario, the observation of abrupt elevations of physicochemical parameters, such as turbidity and other indicators, can signal anomalies associated with the occurrence of critical events, requiring operational actions and planning to mitigate negative environmental impacts on water resources. This work aims to integrate Machine Learning methods specialized in anomaly detection with data obtained from remote sensing images to identify with high turbidity events in the surface water of the Três Marias Hydroelectric Reservoir. Four distinct threshold-based scenarios were evaluated, in which the overall performance, based on F1-score, showed decreasing trends as the thresholds became more restrictive. In general, the anomaly identification maps generated through the models ratified the applicability of the methods in the diagnosis of surface water in reservoirs in distinct hydrological contexts (dry and wet), effectively identifying locations with anomalous turbidity values.
Keywords
Anomaly detection; Satellite images; Water quality; Monitoring
Journal
Science of The Total Environment: Volume 902
Status | Published |
---|---|
Funders | Brazilian National Research Council |
Publication date | 31/12/2023 |
Publication date online | 31/08/2023 |
Date accepted by journal | 30/07/2023 |
URL | http://hdl.handle.net/1893/35586 |
Publisher | Elsevier BV |
ISSN | 0048-9697 |
People (1)
Lecturer, Computing Science