Article

Unicellular Cyanobacteria Are Important Components of Phytoplankton Communities in Australia’s Northern Oceanic Ecoregions

Details

Citation

Moore LR, Huang T, Ostrowski M, Mazard S, Kumar SS, Gamage HKAH, Brown MV, Messer LF, Seymour JR & Paulsen IT (2019) Unicellular Cyanobacteria Are Important Components of Phytoplankton Communities in Australia’s Northern Oceanic Ecoregions. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.03356

Abstract
The tropical marine environments of northern Australia encompasses a diverse range of geomorphological and oceanographic conditions and high levels of productivity and nitrogen fixation. However, efforts to characterize phytoplankton assemblages in these waters have been restricted to studies using microscopic and pigment analyses, leading to the current consensus that this region is dominated by large diatoms, dinoflagellates, and the marine cyanobacterium Trichodesmium. During an oceanographic transect from the Arafura Sea through the Torres Strait to the Coral Sea, we characterized prokaryotic and eukaryotic phytoplankton communities in surface waters using a combination of flow cytometry and Illumina based 16S and 18S ribosomal RNA amplicon sequencing. Similar to observations in other marine regions around Australian, phytoplankton assemblages throughout this entire region were rich in unicellular picocyanobacterial primary producers while picoeukaryotic phytoplankton formed a consistent, though smaller proportion of the photosynthetic biomass. Major taxonomic groups displayed distinct biogeographic patterns linked to oceanographic and nutrient conditions. Unicellular picocyanobacteria dominated in both flow cytometric abundance and carbon biomass, with members of the Synechococcus genus dominating in the shallower Arafura Sea and Torres Strait where chlorophyll a was relatively higher (averaging 0.4 ± 0.2 mg m-3), and Prochlorococcus dominating in the oligotrophic Coral Sea where chlorophyll a averaged 0.13 ± 0.07 mg m-3. Consistent with previous microscopic and pigment-based observations, we found from sequence analysis that a variety of diatoms (Bacillariophyceae) exhibited high relative abundance in the Arafura Sea and Torres Strait, while dinoflagellates (Dinophyceae) and prymnesiophytes (Prymnesiophyceae) were more abundant in the Coral Sea. Ordination analysis identified temperature, nutrient concentrations and water depth as key drivers of the region’s assemblage composition. This is the first molecular and flow cytometric survey of the abundance and diversity of both prokaryotic and picoeukaryotic phytoplankton in this region, and points to the need to include the picocyanobacterial populations as an essential oceanic variable for sustained monitoring in order to better understand the health of these important coastal waters as global oceans change

Keywords
eukaryotic phytoplankton; marine cyanobacteria; Australia; amplicon sequencing; flow cytometry

Journal
Frontiers in Microbiology: Volume 9

StatusPublished
FundersAustralian Research Council
Publication date31/01/2019
Publication date online31/01/2019
URLhttp://hdl.handle.net/1893/35408
PublisherFrontiers Media SA
eISSN1664-302X

People (1)

People

Dr Lauren Messer

Dr Lauren Messer

Post Doctoral Research Fellow, Biological and Environmental Sciences