Article

A Social Network Analysis of Tweets Related to Masks during the COVID-19 Pandemic

Details

Citation

Ahmed W, Vidal-Alaball J, Lopez Segui F & Moreno-Sánchez PA (2020) A Social Network Analysis of Tweets Related to Masks during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 17 (21), Art. No.: 8235. https://doi.org/10.3390/ijerph17218235

Abstract
Background: High compliance in wearing a mask is a crucial factor for stopping the transmission of COVID-19. Since the beginning of the pandemic, social media has been a key communication channel for citizens. This study focused on analyzing content from Twitter related to masks during the COVID-19 pandemic. Methods: Twitter data were collected using the keyword “mask” from 27 June 2020 to 4 July 2020. The total number of tweets gathered were n = 452,430. A systematic random sample of 1% (n = 4525) of tweets was analyzed using social network analysis. NodeXL (Social Media Research Foundation, California, CA, USA) was used to identify users ranked influential by betweenness centrality and was used to identify key hashtags and content. Results: The overall shape of the network resembled a community network because there was a range of users conversing amongst each other in different clusters. It was found that a range of accounts were influential and/or mentioned within the network. These ranged from ordinary citizens, politicians, and popular culture figures. The most common theme and popular hashtags to emerge from the data encouraged the public to wear masks. Conclusion: Towards the end of June 2020, Twitter was utilized by the public to encourage others to wear masks and discussions around masks included a wide range of users.

Keywords
COVID-19; coronavirus; twitter; masks; transmission; public health

Journal
International Journal of Environmental Research and Public Health: Volume 17, Issue 21

StatusPublished
FundersNewcastle University
Publication date30/11/2020
Publication date online07/11/2020
Date accepted by journal04/11/2020
URLhttp://hdl.handle.net/1893/33384
PublisherMDPI AG
eISSN1660-4601

People (1)

People

Dr Wasim Ahmed
Dr Wasim Ahmed

Senior Lecturer in Digital Business, Management, Work and Organisation

Tags