Article

Bat responses to changes in forest composition and prey abundance depend on landscape matrix and stand structure

Details

Citation

Froidevaux JSP, Barbaro L, Vinet O, Larrieu L, Bas Y, Molina J, Calatayud F & Brin A (2021) Bat responses to changes in forest composition and prey abundance depend on landscape matrix and stand structure. Scientific Reports, 11, Art. No.: 10586. https://doi.org/10.1038/s41598-021-89660-z

Abstract
Despite the key importance of the landscape matrix for bats, we still not fully understand how the effect of forest composition interacts at combined stand and landscape scales to shape bat communities. In addition, we lack detailed knowledge on the effects of local habitat structure on bat-prey relationships in forested landscapes. We tested the assumptions that (i) forest composition has interacting effects on bats between stand and landscape scales; and (ii) stand structure mediates prey abundance effects on bat activity. Our results indicated that in conifer-dominated landscapes (> 80% of coniferous forests) bat activity was higher in stands with a higher proportion of deciduous trees while bats were less active in stands with a higher proportion of deciduous trees in mixed forest landscapes (~ 50% of deciduous forests). Moth abundance was selected in the best models for six among nine bat species. The positive effect of moth abundance on Barbastella barbastellus was mediated by vegetation clutter, with dense understory cover likely reducing prey accessibility. Altogether, our findings deepen our understanding of the ecological processes affecting bats in forest landscapes and strengthen the need to consider both landscape context and trophic linkage when assessing the effects of stand-scale compositional and structural attributes on bats.

Keywords
Biodiversity; Forest ecology

Journal
Scientific Reports: Volume 11

StatusPublished
Publication date31/12/2021
Publication date online19/05/2021
Date accepted by journal16/04/2021
URLhttp://hdl.handle.net/1893/32691
eISSN2045-2322

People (1)

People

Dr Jeremy Froidevaux

Dr Jeremy Froidevaux

Researcher, Biological and Environmental Sciences