Conference Proceeding

A NEAT Visualisation of Neuroevolution Trajectories



Sarti S & Ochoa G (2021) A NEAT Visualisation of Neuroevolution Trajectories. In: Castillo PA & Jiménez Laredo JL (eds.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, 12694. 24th International Conference, EvoApplications 2021, Seville, Spain, 07.04.2021-09.04.2021. Cham, Switzerland: Springer, pp. 714-728.

NeuroEvolution of Augmenting Topologies (NEAT) is a system for evolving neural network topologies along with weights that has proven highly effective and adaptable for solving challenging reinforcement learning tasks. This paper analyses NEAT through the lens of Search Trajectory Networks (STNs), a recently proposed visual approach to study the dynamics of evolutionary algorithms. Our goal is to improve the understanding of neuroevolution systems. We present a visual and statistical analysis contrasting the behaviour of NEAT, with and without using the crossover operator, when solving the two benchmark problems outlined in the original NEAT article: XOR and double-pole balancing. Contrary to what is reported in the original NEAT article, our experiments without crossover perform significantly better in both domains.

Neuroevoltuion; NEAT; Search Trajectory Networks

Title of seriesLecture Notes in Computer Science
Number in series12694
Publication date01/04/2021
Publication date online01/04/2021
Place of publicationCham, Switzerland
ISSN of series0302-9743
Conference24th International Conference, EvoApplications 2021
Conference locationSeville, Spain

People (2)


Professor Gabriela Ochoa

Professor Gabriela Ochoa

Professor, Computing Science

Mr Stefano Sarti

Mr Stefano Sarti

Tutor, Computing Science and Mathematics - Division