Article

Available and missing data to model impact of climate change on European forests

Details

Citation

Ruiz-Benito P, Vacchiano G, Lines ER, Reyer CPO, Ratcliffe S, Morin X, Hartig F, Mäkelä A, Yousefpour R, Chaves JE, Palacios-Orueta A, Benito-Garzón M, Morales-Molino C, Julio Camarero J & Jump AS (2020) Available and missing data to model impact of climate change on European forests. Ecological Modelling, 416, Art. No.: 108870. https://doi.org/10.1016/j.ecolmodel.2019.108870

Abstract
Climate change is expected to cause major changes in forest ecosystems during the 21st century and beyond. To assess forest impacts from climate change, the existing empirical information must be structured, harmonised and assimilated into a form suitable to develop and test state-of-the-art forest and ecosystem models. The combination of empirical data collected at large spatial and long temporal scales with suitable modelling approaches is key to understand forest dynamics under climate change. To facilitate data and model integration, we identified major climate change impacts observed on European forest functioning and summarised the data available for monitoring and predicting such impacts. Our analysis of c. 120 forest-related databases (including information from remote sensing, vegetation inventories, dendroecology, palaeoecology, eddy-flux sites, common garden experiments and genetic techniques) and 50 databases of environmental drivers highlights a substantial degree of data availability and accessibility. However, some critical variables relevant to predicting European forest responses to climate change are only available at relatively short time frames (up to 10-20 years), including intra-specific trait variability, defoliation patterns, tree mortality and recruitment. Moreover, we identified data gaps or lack of data integration particularly in variables related to local adaptation and phenotypic plasticity, dispersal capabilities and physiological responses. Overall, we conclude that forest data availability across Europe is improving, but further efforts are needed to integrate, harmonise and interpret this data (i.e. making data useable for non-experts). Continuation of existing monitoring and networks schemes together with the establishments of new networks to address data gaps is crucial to rigorously predict climate change impacts on European forests.

Keywords
climatic extremes; data accessibility; data integration; drivers; forest responses to climate change; harmonisation; open access

Notes
Additional co-authors: Jens Kattge, Aleksi Lehtonen, Andreas Ibrom, Harry J F Owen, Miguel A Zavala

Journal
Ecological Modelling: Volume 416

StatusPublished
FundersEuropean Commission (Horizon 2020)
Publication date15/01/2020
Publication date online23/12/2019
Date accepted by journal30/10/2019
URLhttp://hdl.handle.net/1893/30431
ISSN0304-3800

People (1)

People

Professor Alistair Jump

Professor Alistair Jump

Dean of Natural Sciences, NS Management and Support