Article

The genetic diversity, morphology, biogeography, and taxonomic designations of Ammonia (Foraminifera) in the Northeast Atlantic

Details

Citation

Bird C, Schweizer M, Roberts A, Austin WEN, Knudsen KL, Evans KM, Filipsson HL, Sayer MDJ, Geslin E & Darling KF (2020) The genetic diversity, morphology, biogeography, and taxonomic designations of Ammonia (Foraminifera) in the Northeast Atlantic. Marine Micropaleontology, 155, Art. No.: 101726. https://doi.org/10.1016/j.marmicro.2019.02.001

Abstract
The genetic diversity, morphology and biogeography of Ammonia specimens was investigated across the Northeast (NE) Atlantic margins, to enhance the regional (palaeo)ecological studies based on this genus. Living specimens were collected from 22 sampling locations ranging from Shetland to Portugal to determine the distribution of Ammonia genetic types across the NE Atlantic shelf biomes. We successfully imaged (via scanning electron microscopy, SEM) and genotyped 378 Ammonia specimens, based on the small subunit (SSU) rRNA gene, linking morphology to genetic type. Phylogenetic analyses enabled identification of seven genetic types and subtypes inhabiting the NE Atlantic margins. Where possible, we linked SSU genetic types to the established large subunit (LSU) T-type nomenclature of Hayward et al. (2004). SSU genetic types with no matching T-type LSU gene sequences in GenBank were allocated new T-numbers to bring them in line with the widely adopted T-type nomenclature. The genetic types identified in the NE Atlantic margins are T1, T2, T3, T6, and T15, with both T2 and T3 being split further into the subtypes T2A and T2B, and T3S and T3V respectively. The seven genetic types and subtypes exhibit different biogeographical distributions and/or ecological preferences, but co-occurrence of two or more genetic types is common. A shore-line transect at Dartmouth (South England) demonstrates that sampling position on shore (high, middle or low shore) influences the genetic type collected, the numbers of genetic types that co-occur, and the numbers of individuals collected. We performed morphometric analysis on the SEM images of 158 genotyped Ammonia specimens. T15 and the subtypes T3S and T3V can be morphologically distinguished. We can unequivocally assign the taxonomic names A. batava and A. falsobeccarii to T3S and T15, respectively. However, the end members of T1, T2A, T2B and T6 cannot be unambiguously distinguished, and therefore these genetic types are partially cryptic. However, we confirm that T2A can be assigned to A. aberdoveyensis, but caution must be taken in warm provinces where the presence of T2B will complicate the morphological identification of T2A. We suggest that T6 should not currently be allocated to the Pliocene species A. aomoriensis due to morphological discrepancies with the taxonomic description and to the lack of genetic information. Of significance is that these partially cryptic genetic types frequently co-occur, which has considerable implications for precise species identification and accurate data interpretation.

Keywords
Palaeontology; Oceanography;Ammonia; genetic types; morphometrics; biogeography; taxonomy

Journal
Marine Micropaleontology: Volume 155

StatusPublished
FundersSwedish Research Council, Natural Environment Research Council and The Carnegie Trust
Publication date31/03/2020
Publication date online19/02/2019
Date accepted by journal07/02/2019
URLhttp://hdl.handle.net/1893/28854
PublisherElsevier BV
ISSN0377-8398

People (1)

Dr Clare Bird

Dr Clare Bird

Senior Lecturer, Biological and Environmental Sciences