Article

Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste

Details

Citation

Robinson G, Mactavish T, Savage C, Caldwell GS, Jones CLW, Probyn T, Eyre BD & Stead SM (2018) Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste. Biogeosciences, 15 (6), pp. 1863-1878. https://doi.org/10.5194/bg-15-1863-2018

Abstract
The treatment of organic wastes remains one of the key sustainability challenges facing the growing global aquaculture industry. Bioremediation systems based on coupled bioturbation-microbial processing offer a promising route for waste management. We present, for the first time, a combined biogeochemical-molecular analysis of the short-term performance of one such system that is designed to receive nitrogen-rich particulate aquaculture wastes. Using sea cucumbers (Holothuria scabra) as a model bioturbator we provide evidence that adjusting the waste CgN from 5g1 to 20g1 promoted a shift in nitrogen cycling pathways towards the dissimilatory nitrate reduction to ammonium (DNRA), resulting in net NH4+ efflux from the sediment. The carbon amended treatment exhibited an overall net N2 uptake, whereas the control receiving only aquaculture waste exhibited net N2 production, suggesting that carbon supplementation enhanced nitrogen fixation. The higher NH4+ efflux and N2 uptake was further supported by meta-genome predictions that indicate that organic-carbon addition stimulated DNRA over denitrification. These findings indicate that carbon addition may potentially result in greater retention of nitrogen within the system; however, longer-term trials are necessary to determine whether this nitrogen retention is translated into improved sea cucumber biomass yields. Whether this truly constitutes a remediation process is open for debate as there remains the risk that any increased nitrogen retention may be temporary, with any subsequent release potentially raising the eutrophication risk. Longer and larger-scale trials are required before this approach may be validated with the complexities of the in-system nitrogen cycle being fully understood.

Journal
Biogeosciences: Volume 15, Issue 6

StatusPublished
FundersBiotechnology and Biological Sciences Research Council
Publication date29/03/2018
Publication date online29/03/2018
Date accepted by journal11/01/2018
URLhttp://hdl.handle.net/1893/28574
ISSN1726-4170