Identifying the tree species compositions that maximize ecosystem functioning in European forests



Baeten L, Bruelheide H, van der Plas F, Kambach S, Ratcliffe S, Jucker T, Allan E, Ampoorter E, Barbaro L, Bastias CC, Bauhus J, Benavides R, Bonal D, Bouriaud O & Joly F (2019) Identifying the tree species compositions that maximize ecosystem functioning in European forests. Journal of Applied Ecology, 56 (3), pp. 733-744.

1. Forest ecosystem functioning generally benefits from higher tree species richness, but variation within richness levels is typically large. This is mostly due to the contrasting performances of communities with different compositions. Evidence‐based understanding of composition effects on forest productivity, as well as on multiple other functions will enable forest managers to focus on the selection of species that maximise functioning, rather than with diversity per se. 2. We used a dataset of thirty ecosystem functions measured in stands with different species richness and composition in six European forest types. First, we quantified whether the compositions that maximise annual above ground wood production (productivity) generally also fulfil the multiple other ecosystem functions (multifunctionality). Then, we quantified the species identity effects and strength of interspecific interactions to identify the ‘best’ and ‘worst’ species composition for multifunctionality. Finally, we evaluated the real‐world frequency of occurrence of best and worst mixtures, using harmonised data from multiple national forest inventories. 3. The most productive tree species combinations also tended to express relatively high multifunctionality, although we found a relatively wide range of compositions with high or low average multifunctionality for the same level of productivity. Monocultures were distributed among the highest as well as the lowest performing compositions. The variation in functioning between compositions was generally driven by differences in the performance of the component species and, to a lesser extent, by particular interspecific interactions. Finally, we found that the most frequent species compositions in inventory data were monospecific stands and that the most common compositions showed below‐average multifunctionality and productivity. 4. Synthesis and applications. Species identity and composition effects are essential to the development of high‐performing production systems, for instance in forestry and agriculture. They therefore deserve great attention in the analysis and design of functional biodiversity studies if the aim is to inform ecosystem management. A management focus on tree productivity does not necessarily trade‐off against other ecosystem functions; high productivity and multifunctionality can be combined with an informed selection of tree species and species combinations.

Ecology; forest management; FunDivEUROPE; ecosystem multifunctionality; overyielding; species interactions; tree species mixtures; productivity; forestry;

Additional co-authors: Filippo Bussotti, Monique Carnol, Bastien Castagneyrol, Yohan Charbonnier, Ewa Chećko, David A Coomes, Jonas Dahlgren, Seid Muhie Dawud, Hans De Wandeler, Timo Domisch, Leena Finér, Markus Fischer, Mariangela Fotelli, Arthur Gessler, Charlotte Grossiord, Virginie Guyot, Stephan Hättenschwiler, Hervé Jactel, Bogdan Jaroszewicz, Julia Koricheva, Aleksi Lehtonen, Sandra Müller, Bart Muys, Diem Nguyen, Martina Pollastrini, Kalliopi Radoglou, Karsten Raulund-Rasmussen, Paloma Ruiz-Benito, Federico Selvi, Jan Stenlid, Fernando Valladares, Lars Vesterdal, Kris Verheyen, Christian Wirth, A Zavala Miguel, Michael Scherer-Lorenzen

Journal of Applied Ecology: Volume 56, Issue 3

FundersEuropean Commission
Publication date31/03/2019
Publication date online23/11/2018
Date accepted by journal23/10/2018

People (1)


Dr Francois-Xavier Joly

Dr Francois-Xavier Joly

Lecturer in Soil, Biological and Environmental Sciences