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 Abstract—This paper proposes a novel local energy-based shape histogram (LESH) as the feature set for recognition of 

abnormalities in mammograms. It investigates the implication of this technique on mammogram datasets of the Mammographic 

Image Analysis Society and INbreast. In the evaluation, regions of interest were extracted from the mammograms, their LESH 

features were calculated, and they were fed to support vector machine (SVM) classifiers. In addition, the impact of selecting a subset 

of LESH features on classification performance was also observed and benchmarked against a state-of-the-art wavelet based feature 

extraction method. The proposed method achieved a higher classification accuracy of range 99.00±0.50 as well as an Az value of 

0.9900±0.0050 with multiple SVM kernels where linear kernel performs with 100% accuracy for distinguishing between the 

abnormalities (masses vs. microcalcifications). Hence, the general capability of the proposed method was established, in which it not 

only distinguishes between malignant and benign cases for any type of abnormality but also among different types of abnormalities. 

It is therefore concluded that LESH features are an excellent choice for extracting significant clinical information from 

mammogram images with significant potential for application to 3-D MRI images.  

 

Keywords—Computer-aided decision support system (CADSS), local energy-based shape histogram (LESH), support vector 

machine (SVM), local energy model, receiver operating characteristic (ROC) curve. 

 

1 Introduction 

Breast cancer is a fatal disease that originates in breast tissue. It primarily affects women; however, men can also develop it. 

Breast cancer caused more deaths than any other cancer in women in the US in 2011, when it was the second-most diagnosed 

cancer after skin cancer. In the UK, breast cancer accounts for 30% of all female cancers; almost one in nine women is 

estimated to develop it. In the EU, a woman is diagnosed with breast cancer every 2.5 minutes (American Cancer Society, 

2011). Although the risk of breast cancer is lowest in less-developed countries, it is increasing every year (Ahmedin et al., 2011; 

Hollander, D. 2002; Shulman et al., 2010).  

The fatality rate of breast cancer can be reduced by early diagnosis and treatment. Computer-aided decision support systems 

(CADSSs) combined with mammography help doctors diagnose breast cancer at an early stage. CADSSs function in four key 

steps: preprocessing, feature extraction, feature selection, and classification. The preprocessing step includes breast image 

segmentation and filtering, which is followed by image normalization to improve image quality and reduce noise. In feature 

extraction, images of lesions are extracted from enhanced images by using various techniques. In feature selection, an 

additional set of features is selected. In classification, the selected feature set is classified to separate false signals from true 

ones. 

The essence of an accurate diagnosis exists in the selection of suitable features that can differentiate between normal and 

abnormal cases. The literature reports many techniques for feature extraction. (Yu et al., 2006) used a combination of 

model-based and statistical texture features to detect microcalcifications. This approach first detects the region of interest 

(ROI)—in this case, the area that contains the microcalcifications—by using wavelets and thresholds. It then extracts texture 

features from the ROI by using Markov random fields, fractal models, and statistical features. The performance of this approach 

was evaluated by using the area under the free-response receiver operating characteristic curve (FROC). A true positive rate of 

94% was achieved with a 1.0 false positive per image rate.  

Multi-resolution methods greatly interest researchers in image processing, analysis, biology, and other fields. (Eltoukhy et 

al., 2010) applied curvelet transforms to mammograms. They used the largest coefficients of the curvelet as feature vectors. The 

method resulted in a 98.59% classification accuracy when using SVM classifiers. (Lladó et al., 2009) used extended local 

binary pattern (LBP) histogram features. These features were extracted from regions that showed masses on the mammogram. 
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The method resulted in an Az value of 0.94 ±0.02. (Wang et al., 2009) classified malignant and benign masses by using SVM for 

features selected from the ROI. The feature set included curvilinear, texture, Gabor, and multi-resolution features. Performance 

was measured using by ROC and reached 0.97 with a maximum accuracy of 91.4%. (Karahaliou et al., 2008) found that the 

texture properties of the area surrounding the microcalcification were significant when detecting malignancies in 

mammograms. This approach considered features such as grey-level first-order statistics, grey-level co-occurrence matrices, 

and Laws’ texture energy measures, which were extracted from the surrounding tissue of regions of interest (ST-ROI). A 

redundant discrete wavelet transform (RWT) was then applied to the image. The wavelet coefficient first-order statistics and 

wavelet coefficient co-occurrence matrices for ST-ROI were then used as features. This combination of features resulted in an 

Az performance of 0.9989. (Delogu et al., 2007) extracted 16 different features, including mass perimeter, circularity, mean of 

the normalized radial length, and others, from segmented masses and studied their various combinations. These features, which 

were further selected by using feature discriminating power and linear correlation interplay techniques, were fed to a 

multi-layer perceptron neural network for classification. It achieved 97.8% accuracy. (Rashed et al., 2007) experimented with 

different wavelet transforms to analyse their ability to discriminate among different classes of abnormalities, such as clusters, 

speculated lesions, circumscribed masses, and ill-defined lesions. (Moussa et al., 2005) used wavelet (Daubechies) coefficients 

as feature vectors. In this approach, the horizontal, vertical, and diagonal detailed coefficients were first extracted from the 

image decomposition via Daubechies wavelets. The coefficients were then normalized and the energy for each feature vector 

was calculated. This output was used for classification purposes. The features were reduced depending on the level of energy 

required. 

(Verma et al., 2010) used density and shape features, such as mass margins, abnormality assessment rank, patient age, and 

subtlety values as features and then applied soft clustering using k-mean to separate each class further. After clustering within 

malignant and benign cases, neural network was applied with two additional layers other than the conventional three layer 

neural network architecture. One of these additional layers was a fixed weight layer while the other one is the cluster layer 

which prescribes the natural tendency of the output towards a malignant or benign class. The algorithm achieved a maximum 

accuracy of 97.5% on test set. (Diaz-Huerta et al., 2014) applied contrast enhancement with extended maxima threshold for 

image enhancement next it extracted special, texture, and spectral domain features from it. It further applied support vector 

machine classifier to distinguish between malignant and benign microcalcifications. The result reached sensitivity of 85.9% 

over all. (Rahimeh et al. 2015) Applied artificial neural network (ANN) and cellular neural network (CNN) based segmentation 

upon mammograms. Further it extracted texture and shape features from segmentation area and fed it to artificial neural 

network for classification between malignant and benign masses. The result reached accuracy of 96.87% at maximum. 

(Soltanian-Zadeh et al., 2004) Experimented with texture: multiwavelet, wavelet, Haralick, and shape features to classify 

between malignant and benign microcalcifications. Features were further selected using genetic algorithm. The result was 

maximum 0.89 ROC value. (Marcelo et al., 2013) considered wavelets (Daubechies-8 (db8), Symlet 8 (sym8) and 

bi-orthogonal 3.7 (bior3.7)) as features and applied polynomial classifier to discriminate abnormal cases from nomal ones. 

They achieved Az value of 0.98±0.03 as classification performance on DDSM mammogram dataset. 

Most of the above mentioned algorithms focus on one type of abnormality (either mass or microcalcification) and try to 

diagnose their malignancy whereas this paper proposes a method which can efficiently deals with different types of 

abnormalities at the same time while discriminating between malignant and benign cases with higher accuracy rate. The 

algorithm also produces good results in discriminating between different types of abnormalities as can been seen in results 

section. 

Main objective of this research is to evaluate the implication of a novel LESH feature extraction technique for diagnosing 

malignancies in mammograms and this algorithm generates more accurate results than other mentioned algorithms above. 

LESH has been successfully applied in pattern matching applications with promising results. (Zakir et al., 2011) applied LESH 

to automatically detect and recognize different road signs. (Sarfraz & Hellwich, 2008a; 2008b; 2009) experimented with LESH 

in face recognition systems for different face and head poses. LESH works by calculating a histogram of the local energy 

pattern within the image. A histogram is a simple technique that forms the basis of many spatial domain image processing 

techniques (Gonzalez & Woods, 2002). It provides useful image statistics that can be used to further analyse and process the 

image, and is described later in this paper.   

 The remainder of this paper is organized as follows. Section 2 introduces the proposed LESH scheme. Section 3 describes 

the experimental work; the results and discussion are presented in Section 4. Conclusions and future work are presented in 

Section 5.  

 

2 Local Energy-based Shape Histogram Feature Extraction 

LESH works by converting an image into a combination of local energies along different orientations. (Morrone, M.C. & 

Owens, R., 1987) suggested that features extracted at the points of maximum phase congruency can be helpful in image 

analysis. The type of phase and amplitude of local maxima of the energy function determines the type, sign, and contrast of a 



feature. This framework to calculate the phase congruency in two-dimensional images while using a high-pass filter to obtain 

image features at different scales is given as (Kovesi, P. D., 1999): 
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and T is the noise cancellation factor, while W(z) is the weighting of the frequency spread. An and    represent the amplitude 

and phase angle, respectively, of local complex value Fourier components at location z in the image of size n.   is a constant 

value incorporated to avoid division by zero (Kovesi, P. D., 1999). 

Here, An and     are calculated using the logarithmic Gabor wavelets filter (Morrone, M.C. & Owens, R., 1987). It detects 

low-level features that are invariant to image illumination, contrast, and image magnification (Kovesi, P. D., 2000). These 

one-dimensional symmetric/anti-symmetric filters are transformed into a two-dimensional form by applying a Gaussian 

spreading function across the direction that is perpendicular to its orientation. The image is convolved with a bank of Gabor 

kernels at each of the 16 sub-regions along 8 different orientations as defined by (Zhang et al., 2007; Zakir et al., 2011): 

    (𝑧)   (𝑧)      (𝑧) (3) 

where  z = (𝑥, 𝑦) represents the image position, the asterisk ‘ ’ is the convolution operator, and     (𝑧) is the convolution result 

of the Gabor kernel at orientation 𝑢 and scale 𝑣. The Gabor wavelet kernel     (𝑧) can be calculated as follows ((Zhang et al., 

2007) : 
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Where ‖ ‖  is a norm operator and wave vector         
    with          

  and         and        is the 

maximum frequency and and f is the space factor between the kernels in the frequency domain and σ=2π (Liu, C., 2004). These 

filters are designed to detect features in all orientations because they uniformly tile the frequency plane. Energy, PC(z), at each 

orientation is calculated and then summed as a whole. The sum of energies for each orientation is normalized by overall sum 

and scales of amplitude of individual wavelet responses at a specific location z. Hence, the calculated two-dimensional PC is 

given as: 
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where 0 denotes the index of orientation, as detailed in (Kovesi, P. D., 2000). 

 
 

Fig. 1.  Different samples of abnormalities in the MIAS database: (a) circumscribed masses (CIRC) mdb015; (b) ill-defined masses (MISC) mdb032; (c) 

speculated masses (SPIC) mdb145; (d) calcification (CALC) mdb241; (e) architectural distortion (ARCH) mdb115. 

3 Experimental Work 

The experiment proceeds through specific steps, as shown in Fig. 2. 

 

 



Fig. 2.  Overview of proposed methodology. 

 

3.1 Mammogram Datasets 

We experimented with two publically available mammogram datasets: the Mammographic Image Analysis Society (MIAS) 

and INbreast datasets. The MIAS dataset (Suckling J. et al., 1994) contains images in 1024x1024-pixel resolution, which have 

been digitized with 50-micron pixel edges; they are available in Portable Gray Map (PGM) format. The dataset contains 322 

mammogram cases from 161 patients. Of these 322 mammograms, 207 are normal, 51 are malignant, and 64 are benign. The 

images have been labelled by radiologists and provide a variety of abnormal cases naming: microcalcification (25 cases); 

circumscribed masses (23 cases); architectural distortion (19 cases); speculated masses (19 cases) and miscellaneous (15 

cases). Almost 50% of the images are comprised of backgrounds with different types of noise.  

The INbreast dataset contains 115 cases (410 images) with different types of abnormalities (Moreira I. C. et al., 2012). The 

images were acquired from the Centro Hospitalar de S. João [CHSJ], Breast Centre, Porto, with the permission of the 

Portuguese National Committee of Data Protection and Hospital's Ethics Committee. The images are in Digital Imaging and 

Communications in Medicine (DICOM) format with annotations and metadata available. The prominent abnormalities are 

masses (108 cases) and calcifications (308 cases) with only 3 cases of architectural distortion and 14 cases of asymmetry. 396 

ROI were gathered from the dataset for experimentation out of those 117 were masses (with some cases had multiple masses) 

and 279 were calcifications. 

 

3.2 Image Preprocessing 

Mammograms are inherently noisy images. This noise hinders the true detection of small micro calcifications and masses. 

Mammograms were pre-processed to suppress the noise and enhance important image features. The preprocessing includes two 

steps: image normalization and then application of Contrast Limited Adaptive Histogram Equalization (CLAHE). The steps are 

summarized below: 

3.2.1 Image Normalization 

Mammograms obtained from the MIAS dataset have intensity values in the range of 0 to 255, whereas INbreast 

mammograms have intensity values in the 0 to 32,767 range. Image normalization was applied to the mammograms from both 

datasets to adjust the intensity within a common range of 0 to 1 values. Let z0 be the original mammogram image then after 

normalization image z is given as: 

𝑧  (𝑧     )
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Where original image z0 has intensity range (Min, Max) and new image z has intensity range (newMin, newMax) (Gonzalez 

& Woods, 2002). 

Further, contrast limited adaptive histogram equalization (CLAHE) (Derek T Puff et al., 1994) was applied for image 

enhancement.  

3.2.2 Contrast Limited Adaptive Histogram Equalization (CLAHE) 

CLAHE applies histogram equalization(HE) to sub-regions of an image by first dividing an image into contextual blocks 

(tiles). It then creates a histogram for each block using a specific number of bins and clips the histogram at a certain threshold. 

It maps each region according to the new histogram results. Finally, it interpolates gray-level mapping to reconstruct the final 

CLAHE image (Sundaram et al., 2011). 

This approach is the most widely used technique for enhancing medical images and is based on histogram equalization. 

3.2.2.1 Histogram Equalization (HE) 

It is a classical technique which uses histogram of an image for contrast adjustment. It increases the contrast of low intensity 

areas in the image by spreading out the most frequent intensity values. For an image z with pixel intensity values ranging from 

0 to L-1, where L being 256 here, a normalized histogram p with a bin for each possible intensity level, the probability of 

occurrence of intensity value k can be written as (Gonzalez & Woods, 2002): 
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The Cumulative Distribution Function corresponding to p is given as: 

    ( )  ∑  ( ) 
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Then histogram equalization is an image transformation such that the transformed image has flat Cumulative Frequency 

Distribution (CDF) given as: 

   ( )      (9) 



 

where m is a contrast within the range 0 to L-1. 

 

3.3 Region of Interest Extraction  

After preprocessing step, ROIs were extracted from 113 abnormal cases of the MIAS dataset and 396 abnormal cases from 

the INbreast dataset. The abnormalities included: 

1. Circumscribed masses (CIRC): These are the most commonly detected abnormalities in mammograms. They are dense 

and have circumscribed margins. Malignant masses are markedly dense with irregular borders (de Paredes E. S., 2007). 

2. Ill-defined masses (MISC): These masses have poor structure and are predominantly malignant. They are typically 

surrounded by fine tendrils (de Paredes E. S, 2007). 

3. Speculated masses (SPIC): These masses have an irregular appearance with speculation (de Paredes E. S., 2007). 

4. Calcification (CALC): These can be defined as benign or malignant depending on their sizes, shapes, and distribution 

patterns. Their sizes may vary from minute to 3 mm in diameter (de Paredes E. S., 2007). 

5. Architectural Distortion (ARCH): These are speculated masses without a central dense mass (de Paredes E. S., 2007). 

 Fig.1 depicts examples of these abnormalities. The ROIs were extracted according to the information available with the 

dataset.  

 

3.4 Feature Extraction  

Histogram of the local energy information, LESH, was obtained along 16 sub-regions of the ROI along 8 different 

orientations as the feature set. This resulted in a 16 x 8 = 128 dimensional feature vector, as suggested by (Zakir et al., 2011). 

The histogram of the local energy of each sub-region along each filter was generated and combined to preserve the relationship 

between different regions. Next, an orientation map was generated by assigning each pixel an orientation that had the largest 

energy across all scales. The local histogram was calculated as follows: 
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where Wr is the Gaussian weighting function of region 𝑟 in the image z, PC2 represents the local energy computed by the 

equation, and  r-b, represents Kronecker’s delta of the orientation label map   and current bin 𝑏 (Zakir et al., 2011). Fig.3 shows 

the effect of enhancement and the extracted LESH histogram of the ROI. 

 

3.5 Feature Selection 

Impact of selecting a subset of N largest coefficients say hN from LESH feature vectors,       and feeding them to the SVM 

classifier has been studied in detail. (Cristiane et al., 2003) applied the same technique for dimensionality reduction and 

classification improvement. They experimented with different numbers of largest wavelet coefficients as features for 

classification and reported the results.  

 

3.6 Classification with Support Vector Machine 

The selected LESH features, hN were fed to the SVM classifier with different kernel functions. SVMs are supervised learning 

models that are used for classification and regression analysis. SVMs take a set of features as classes input data and predict to 

which of the possible classes each feature vector belongs. For feature vectors of training set in hN, SVM classifier draws a hyper 

plane which separates them into two distinct classes: Malignant (class label being 1) and Benign (class label being 0). The 

hyper plane is given as below:  

 (𝑥)  𝑤    𝑤    (12) 

Here w is a normal vector to the hyper plane. SVM is trained on different sample feature sets. This training algorithm generates 

a model that can assign a specific class to a new unknown feature vector. SVM can perform linear and nonlinear classifications. 

For nonlinear classifications, it first maps features into a high-dimensional feature space using different kernels. SVM 

performance can generally be improved by selecting appropriate kernel methods. Experiments were performed with the four 

kernels outlined below.  

 

3.6.1 Linear Kernel 

The linear kernel is given as follows: 
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where c is the optimal constant. 

3.6.2 Polynomial Kernel 

The polynomial kernel with degree d can be written as: 
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where   and c are adjustable constants and d is the degree of the polynomial. 

3.6.3 Gaussian, Radial Basis Function (RBF) Kernel 

 (     
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where γ is a positive parameter to control the radius. It uses the Euclidean distance to avoid outliers. 

3.6.4 Hyperbolic Tangent (Sigmoid) Kernel or Multi-Layer Perceptron (MLP) 

It was originally derived from neural networks as: 
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where γ and c are adjustable constants. 

 

4 Results and Discussion 

Experiments have been conducted with MIAS and INbreast datasets to distinguish malignant and benign cases and to 

classify abnormalities according to their types. The results were stated using classification accuracy and the ROC curve as 

measures of performance. The classification accuracy was computed as: 
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The ROC curve plots the fraction of true positives out of positives versus the fraction of false positives out of negatives. The 

ROC plots in Fig.4, 5 and 6 depict classification performance for MIAS and INBreast datasets for different SVM kernels. The 

area under the curve (AUC), Az, signifies the classification performance and ranges between 0 and 1, with 1 being the highest 

performance. All reported results were averaged with ten-fold cross validation; they are presented in the tables below. 

The results show that almost all SVM classifiers performed better with the LESH feature set. The prominent performance 

was achieved by the SVM linear classifier, which performed at a stable rate of 99.73% over all multiple feature selection sets 

(Table 1) and with an Az value of 0.9975 ±0.0010 (Table 2) while using the INbreast dataset. The results were verified for the 

MIAS dataset when an accuracy of 100% was achieved by the SVM linear classifier (Table 3) and an Az value of 1.0000 for 70 

selected LESH features (Table 4). The second dominant classifiers were the polynomial and RBF; MLP showed an overall low 

performance accuracy. 

The results in Table 5 verify that LESH is a good choice when discriminating among different types of abnormalities. The 

SVM linear classifier was capable of classifying mass or calcifications with no errors (Tables 5 and 6) for the INbreast dataset. 

The polynomial classifier was second, followed by RBF, in the performance score; MLP again showed a low performance. For 

the MIAS dataset, a few cases    existed    for    different    abnormalities.  



 
 

Fig. 3.  LESH vector for different abnormalities obtained from software developed by (Zakir et al., 2011) (a) circumscribed masses (CIRC); (b) CIRC after 

enhancement; (c) LESH vector for CIRC; (d) ill-defined masses (MISC); (e) MISC after enhancement; (f) LESH vector for MISC; (g) speculated masses 
(SPIC); (h) SPIC after enhancement; (i) LESH vector for SPIC; (j) calcification (CALC); (k) CALC after enhancement; (l) LESH vector for CALC; (m) 

architectural distortion (ARCH); (n) ARCH  after enhancement; (o) LESH vector for ARCH.      

 



Multiclass SVM classification was performed based on the one-for-all scheme to distinguish between different types of 

abnormalities, as noted in Fig. 2. Application of the proposed feature set and SVM classifier still appropriately performed 

(Table 7) and affirmed the importance of LESH features. 

In summary, the results reported in Tables 1-7 suggest that LESH features have the power to emphasize important features in 

the images and that these features can be used to extract useful information. These features perform well with different kernel 

methods; selecting a subset from all available features does not deteriorate classification performance. 

 
Table 1 LESH-based Classification Accuracy % (Malignant/Benign) for INbreast Dataset 

Features 
Selected 

SVM with 
RBF 

SVM with 
Linear 

SVM with 
MLP 

SVM with 
Polynomial 

50 99.46 99.73 93.28 99.46 
70 99.73 99.73 93.61 99.46 

100 99.73 99.73 92.80 99.46 

All 99.45 99.73 92.78 99.73 

 

Table 2 LESH-based Classification Az Value (Malignant/Benign) for INbreast Dataset 

Features 

Selected 

SVM with 

RBF 

SVM with 

Linear 

SVM with 

MLP 

SVM with 

Polynomial 

50 0.9955 0.9964 0.9472 0.9940 
70 0.9975 0.9970 0.9487 0.9937 

100 0.9980 0.9982 0.9440 0.9936 
All 0.9955 0.9975 0.9448 0.9975 

 

Table 3 LESH-based Classification Accuracy % (Malignant/Benign) for MIAS Dataset 

Features 

Selected 

SVM with 

RBF 

SVM with 

Linear 

SVM with 

MLP 

SVM with 

Polynomial 

50 99.09 99.09 94.44 99.17 

70 99.09 100.00 94.54 98.18 

100 99.09 99.09 93.63 96.36 
All 99.09 99.09 94.62 96.51 

 
Table 4 LESH-based Classification Az Value (Malignant/Benign) for MIAS Dataset 

Features 
Selected 

SVM with 
RBF 

SVM with 
Linear 

SVM with 
MLP 

SVM with 
Polynomial 

50 0.9944 0.9944 0.9430 0.9900 
70 0.9917 1.0000 0.9444 0.9733 

100 0.9929 0.9929 0.9279 0.9616 

All 0.9929 0.9936 0.9470 0.9583 

 
Table 5 LESH-based Classification Accuracy % (Mass vs. Micro Calcification) for INbreast Dataset 

Features 

Selected 

SVM with 

RBF 

SVM with 

Linear 

SVM with 

MLP 

SVM with 

Polynomial 

50 99.50 100.00 86.61 99.75 

70 99.49 100.00 87.62 99.74 
100 99.50 100.00 91.56 99.75 

All 99.44 100.00 87.09 100.00 

 

Table 6 LESH-based Classification Az Value (Mass vs. Micro Calcification) for INbreast Dataset 

Features 

Selected 

SVM with 

RBF 

SVM with 

Linear 

SVM with 

MLP 

SVM with 

Polynomial 

50 0.9967 1.0000 0.8990 0.9982 

70 0.9964 0.9964 0.9172 0.9983 

100 0.9965 1.0000 0.9057 0.9982 

All 0.9960 1.0000 0.9087 1.0000 

 
Table 7 LESH Feature with Multiclass (One-vs.-All) SVM Classifier Performance Accuracy % for MIAS Dataset 

Abnormality 

Type 

SVM with 

RBF 

SVM with 

Linear 

SVM with 

MLP 

SVM with 

Polynomial 

ARCH 85.45 100.00 79.90 100.00 
MISC 100.00 95.45 79.90 100.00 

SPIC 95.67 82.17 90.00 95.45 

CIRC 97.56 100.00 72.15 92.20 
CALC 97.56 97.10 77.89 97.56 

 



 

Fig.4. ROC for classification between malignant/benign cases for MIAS dataset. 

 

Fig.5. ROC for classification between malignant/benign cases for INBreast dataset. 



 
Fig.6. ROC for classification between masses/calcifications cases for INBreast dataset. 

 

 

4.1 Comparative Analysis of LESH and Wavelet-based Feature Extraction for Classification Performance 

In this study, LESH features were compared with wavelet transform-based feature extraction technique, which was used by 

(Moussa et al., 2005; Cristiane et al., 2003. In (Cristiane et al., 2003), the classification results of applying different types of 

wavelets to extract features from mammograms were compared. N largest wavelet coefficients were selected as feature vectors; 

later the SVM classifier was applied. These results were reproduced using Daubechies wavelet (Daubechies, I., 1992) for the 

100 largest coefficients, as recommended by (Cristiane et al., 2003). These results are shown in Tables 8, 9, and 10. The results 

indicate superior performance using LESH features in both binary and multiclass classification. 
Table 8 Wavelet (Daubechies) Feature Extraction-based Classification Results for Binary Classification between Malignant and Benign 

Cases for INbreast Dataset 

Measure 
SVM with 

RBF 
SVM with 

Linear 

SVM 

with 

MLP 

SVM with 
Polynomial 

ACCURACY % 99.19 99.46 94.56 99.46 

Az 0.9928 0.9919 0.9433 0.9919 

 
Table 9 Wavelet (Daubechies) Feature Extraction-based Classification (Mass vs. Micro Calcifications) Results for INbreast Dataset 

Measure 
SVM with 

RBF 

SVM with 

Linear 

SVM 
with 

MLP 

SVM with 

Polynomial 

ACCURACY % 98.73 100.00 95.67 99.75 

Az 0.9898 1.0000 0.9600 0.9980 

 
Table 10 Wavelet-based Feature Extraction for Multiclass (One-vs.-All) SVM Classifier Performance Accuracy % for MIAS Dataset 

Abnormality 

Type 

SVM with 

RBF 

SVM with 

Linear 

SVM with 

MLP 

SVM with 

Polynomial 

ARCH 80.10 94.10 80.10 92.44 

MISC 78.34 76.67 86.56 71.89 

SPIC 73.56 71.56 86.56 67.12 

CIRC 67.12 79.90 46.15 98.00 

CALC 76.67 100.00 96.10 100.00 

 

4.2 Statistical Analysis 

The analysis of variance (ANOVA) statistical inference test (Creech, S., 2003) was applied to calculate the significance of 

the improvement in accuracy by using LESH features compared to the wavelet texture features. The null hypothesis was 

defined as follows: 



1) H0: LESH features are more discriminative in classifying differences in mammograms compared to wavelet features. This 

hypothesis was tested against an alternate hypothesis. 

2) H1: LESH features are not discriminative in classifying differences in mammograms.  

A 0.05 level of confidence was used for experiments, which is standard for statistical testing. The results for binary and 

multiclass classification are shown in Tables 6 through 9. The probability value (p-value) determined whether the null 

hypothesis should be rejected. In both binary and multiclass cases, the p-value was less than the 0.05 confidence level, which 

suggests that the difference between the classification accuracy was insignificant. Because the accurate detection of 

malignancies is critical in breast cancer diagnosis—to avoid unnecessary surgery—these results may be considered an 

improvement (Verma et al., 2010). 

 
Table 11 ANOVA Feature Extraction Information for Binary Classification between Malignant and Benign Cases 

SUMMARY ANOVA single factor test 

Groups Count Sum Average Variance 

LESH 
Features 

8 7.90030 0.98754 0.00022 

Wavelet 

Features 
8 7.65630 0.95704 0.00012 

 

Table 12 ANOVA Feature Extraction Analysis for Different Feature Selection Methods for Binary Classification 

ANOVA       

Source of 

Variation 
SS Df MS F P-value F crit 

Between 
Groups 

0.0037 1 0.0037 21.931 0.0004 4.60011 

Within 

Groups 
0.00237 14 0.0002    

Total 0.00609 15     

 

Table 13 ANOVA Feature Extraction Information for Multiclass Classification 

SUMMARY ANOVA Single Factor Test 

Groups Count Sum Average Variance 

LESH 

Features 
8 7.9003 0.987538 0.000216 

Wavelet 
Features 

8 7.6563 0.957038 0.000123 

 

Table 14 ANOVA Feature Extraction Analysis for Different Feature Selection Methods for Multiclass Algorithm 

ANOVA       

Source of 
Variation 

SS Df MS F P-value F crit 

Between 

Groups 
0.00371 1 0.0040 20.916 0.0005 5.0011 

Within 
Groups 

0.00238 14 0.0002    

Total 0.00609 15     

 

5 Conclusion and future work 

As mentioned earlier, LESH is a histogram of local energy, which is at a maximum level at the abrupt change of image 

intensity. Accordingly, it marks significant the texture variations in the local area. The highest degree coefficients correspond to 

the most significant and prominent set of features in the local area within an image. A subset of these features can be selected 

with some compromise of classification accuracy, which hence reduces the dimensionality. Experiments were performed with 

different numbers of highest degree coefficients and determined that N = 70 is the most appropriate number for improving 

classification accuracy. Overall, the results suggest that LESH generates an effective set of features that improves classification 

performance compared to a state-of-the-art wavelet based feature selection approach which is also evident from plots in Fig. 4,5 

& 6.   

The reason being that although wavelets have efficient image representation but fail to represent discontinuities along curves 



and edges. Other competitive features are curvelets and contourlets. Curvelets on the other hand are superior to wavelets to 

sustain edges. Contourlets are closer to curvelets and are counted as discrete form of curvelets transform but have less clear 

directional features (Jianwei Ma and Plonka, G., 2010). Other than wavelets, many feature extraction techniques has been 

mentioned in section 1. Most of these techniques focus their study on a specific type of abnormality and try to detect their 

malignancy, whereas LESH based methodology provides the advantage of detecting malignancy of any type of abnormality as 

well as can differentiate among different types of abnormalities with quite efficiency.  

Note that while the preliminary results reported in this paper should be taken with care, they do demonstrate the capability of 

exploiting LESH features for breast cancer detection, and a range of contributions and potential impact is envisaged from this 

work, both for clinical practice and further research into employing such models in other clinical applications.  

For future work, more extensive evaluation, and clinical validation is required using additional clinical datasets benchmarked 

against other state-of-the-art feature selection and classification approaches. We also intend to extend cancer detection 

methodologies and experiments to breast magnetic resonance imaging (MRI) and 3-D breast imaging. A hybrid approach to 

adaptively optimise an ensembled feature set based on combination of LESH and other state of the art feature extraction 

technique while selecting significant features can be evaluated for enhancing classification performance. Further, an intensive 

study of clinical significance of LESH features when applied to real clinical dataset may lead to potential uselful intimations.  
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