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Supplementary Information 
This supplementary information gives full details of the growth and birth model.  Some details are 

replicated from the main paper, so that this may be read as a stand-alone document. 

Methods 

Bayesian Model 

The implementation of the Bayesian model simultaneously estimates growth parameters and 

possible birth dates for each mouse.  For each observation, i, of any mouse the input to the model is 

a mouse ID (mi), weight on day of observation (wi),  and day of the year (di).  For every mouse ID, m, 

we also know the mouse sex, sm{female, male}. 

Unknowns 

The model estimates several unknown variables.  The Gompertz growth model is a hierarchical 

model with parameters for population sex and individual, specifically there is a population average 

growth asymptote, Kμ, and rate, αμ; sex specific asymptotes and rate, Kmale, Kfemale, αmale, αfemale; and 

for each mouse, m, individual asymptote and rate, Km, αm.  The random variation in the growth 

model is characterised by precision parameters, τK,sex, τα,sex, τK, τα, τ.  Each mouse has an unknown 

birthday bm. 

Priors 

Prior distribution of population mean growth asymptote is based on measured size of individuals 

observed after day 330 (assumed to be near or fully grown), mean of logs 3.06 = log(w)  (equating 

to weight 21.3g), and standard deviation σlog(w)= 0.099.  According to the Gompertz growth model, all 

weights should have a log normal distribution 

)1/ ,logN( ln ~ 
2

log(w)μ (w)K   

(‘ln N’ denotes the lognormal distribution parameterised by log of mean and precision.  All 

probability distributions are parameterised here as in the OpenBugs implementations, the 

probability density function of this distribution is shown in Figure S1a) 



Using Bayesian Models to Reconstruct Small Mammal Population 

 2/8  

 

Figure S1: Prior probability density distribution of parameters and example 

growth curves: (a) prior density of population mean growth asymptote; (b) 

density of Exp(20) (solid line) and Exp(30) (dashed line) used for unknown 

standard deviations; (c) example Gompertz growth curves with asymptotic size as 

population mean and rate α = -0.008 (upper line, fast growth) and α = -0.064 

(lower line, slow growth). 

 

Prior distribution of population mean growth rate is assumed to be uniform with limits chosen such 

that a mouse reaches 90% of asymptotic size after between 50 and 400 days. 

)008.0,064.0(U   

The variation in growth between the sexes is characterised by the unknown precision parameters 

τK,sex and τα,sex.  These are given priors based on an exponential distribution of the corresponding 

standard deviation (distribution Exp(20) is exponential with has an expected value of 0.05, see Figure 

S1b, solid line) 
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In principal, this can be extended for any number of population components with differing growth 

parameters. 

Individual mice vary from their sex mean growth parameters in the same manner 
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And finally, growth is stochastic so there is an unknown variation between the individual growth 

curve and individual observations of weight, controlled by unknown precision τ.  As variation around 

the growth curve for an individual is likely to be smaller than variation between individuals, we use a 

narrower prior (dotted line on Figure S1b). 

2/1

)30Exp(~
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The possible birthdays of each mouse are assumed to be uniformly distributed from the start of the 

breeding season (20th April=day 110, known from dissection of trapped mice, used as minbirthdaym 

for all mice m) and the day before the first observation of that mouse (maxbirthdaym).  An 

alternative approach used by Zhang et al (2009) is to use a Gamma distribution for age at first 

capture in order to exclude the possibility of trapping at very young age, and of individuals being 

exceptionally old.  We do not consider that we have sufficient information to set a prior for such a 

Gamma distribution, and the short breeding season is likely to be the dominant effect. 

)ymaxbirthda,yminbirthdaU(~ mmmb   

Model Equations 

The expected size of a mouse on a day of observation depends upon its age and the individual 

growth parameters for that mouse, following the Gompertz growth model and with a fixed birth size 

w0 = 1.5g, for all observations i: 

)))(exp()/exp(log()E( 0 iiii mimmmi bdKwKw    

The residual variation between E(wi) and wi has a lognormal distribution with precision τ 

))),((log(N ln~ ii wEw  

Example growth curves for high and low growth rates are shown in Figure S1c,d 

OpenBugs Implementation 

The model is described using the OpenBugs model below 

MouseModel { 
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  # The unknowns are: 

  #  - population growth asymptote and rate: Kmu, alphaMu 

  #  - sex specific growth asymptote and rate: Ksex[s], alphaSex[s] 

  #  - level of sex variation: tauKSex, tauAlphaSex 

  #  - individual growth asymptote and rate: K[m], alpha[m] 

  #  - level of individual variation: tauK, tauAlpha 

  #  - level of observation variation: tau 

  #  - mice's birthdays, birth[m] 

 

 

  # known values (observations given as input) are:  

  #  - mouse observed on each observation: mouse[i] 

  #  - weight at each observation: weight[i] 

  #  - day of each observation: day[i])  

  #  - sex of each mouse: sex[m] 

  #  - range of possible birthdays for each mouse:  

  #    minBirthday[m], maxBirthday[m] 

  #  - number of observations: observations 

  #  - number of mice: mice 

 

 

  # PRIORS 

 

  # K distributed log-normally according to 'adult' data 

  # This is the precision of the log of K in the data 

  log.KPrecision <- 1/(adultLogWeightSD * adultLogWeightSD) 

  Kmu ~ dlnorm(adultMeanLogWeight, log.KPrecision) 

  log.Kmu <- log(Kmu) 

 

  # alpha is the growth rate,  

  # to reach 90% of asymptote in 50 days alpha=-0.064 

  # to reach 90% of asymptote in 400 days, alpha=-0.008 

  # > 20 * exp(log(1.5/20) * exp(-0.064 * 50)) 

  # [1] 17.99596 
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  # > 20 * exp(log(1.5/20) * exp(-0.008 * 400)) 

  # [1] 17.99596 

  alphaMu ~ dunif(-0.064, -0.008) 

 

  # SEX SPECIFIC K AND ALPHA. 

  sigmaKSex ~ dexp(20) # expected value 0.05 

                       # corresponds roughly to 1g variation of 20g mean 

  tauKSex <- 1/(sigmaKSex*sigmaKSex) 

  sigmaAlphaSex ~ dexp(20) # expected value 0.05 

                           # scale corresponds to scale of alphaMu 

  tauAlphaSex <- 1/(sigmaAlphaSex*sigmaAlphaSex) 

  for(s in 1:2){ 

    Ksex[s] ~ dlnorm(log.Kmu, tauKSex) 

    log.Ksex[s] <- log(Ksex[s]) 

    alphaSex[s] ~ dnorm(alphaMu, tauAlphaSex) 

  } 

 

  # tau is the unknown precision of the growth curve 

  # this is 1/varience of residuals  

  # our prior for tau is that large values should be more likely 

  # (i.e. smaller variance) 

  sigmaK ~ dexp(20) # expected value 0.05 

  tauK <- 1/(sigmaK*sigmaK)   

  sigmaAlpha ~ dexp(20) # expected value 0.05 

  tauAlpha <- 1/(sigmaAlpha*sigmaAlpha)   

  sigma ~ dexp(30) # expected value 0.05 

                   # could try smaller variation between samples 

                   # than between mice (e.g. 30) 

  tau <- 1/(sigma*sigma) 

   

  # individual growth 

  for(m in 1:mice){ 

    # individual K and alpha sampled from distributions for sex of mouse 

    K[m] ~ dlnorm(log.Ksex[sex[m]], tauK) 
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    alpha[m] ~ dnorm(alphaSex[sex[m]], tauAlpha)I(-0.100, -0.020) 

      # individual growth rate 

  } 

 

  # birthday distributed normally through the breeding season 

  # but not after first observation of the mouse! 

  for(m in 1:mice){ 

    birthday[m] ~ dunif(minBirthday[m], maxBirthday[m]) 

  } 

 

 

  # GROWTH MODEL 

  for(i in 1:observations){ 

 

    # age 

    age[i] <- (day[i] - birthday[mouse[i]]) 

 

    # expected weight (given birthday, alpha and K) 

    expectedWeight[i] <- K[mouse[i]] * 

                         exp( log(birthWeight/K[mouse[i]]) * 

                              exp(alpha[mouse[i]] * age[i]) ) 

    log.expectedWeight[i] <- log(expectedWeight[i]) 

 

    # residuals (not needed but useful for debugging) 

    #residual[i] <- expectedWeight[i] - weight[i]] 

 

    # error in expected weight 

    weight[i] ~ dlnorm(log.expectedWeight[i], tau) 

 

  } # end for(i in observations) 

   

} # end MouseModel 

Model Fitting 

Model fitting was performed by an R script that assembled the data set before using the BRugs 

library to fit the model in OpenBugs and extract the chains of estimates.  An initial 10000 iterations 
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were used to burn-in the chain, then 50000 iterations thinned by every 10 observations yielded 5000 

sets of estimates of each parameter. 

A copy of the OpenBugs data file can be obtained from NEED TO PUT THE DATA ONLINE 

Results 

Posterior Parameters 

Table S1 shows median and 95% Bayesian confidence intervals for model parameters. 

Table S1: median and 95% Bayesian confidence intervals for model parameters 

 

Figure S2 shows posterior probability densities of parameters, and example growth curves. 

 

Figure S2: Posterior probability density distributions for (a) Kμ, and (b) rate αμ.  

Histogram of posterior distribution, smoothed kernel density plot as solid black 
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line, prior distribution as dashed line, and male and female specific parameter 

Kmale, Kfemale posterior distributions as blue and red respectively. 

 

Figure 1 in the paper shows posterior distributions of growth curves and possible birth dates for 

example mice with different numbers of observations. 

Estimated Birth Dates and Population Growth 

Figure 2 in the paper shows the overall distribution of birth dates of the observed mice, and cohort 

population size based on these birth dates and different values of estimated daily mortality.

 

 

 

 


