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a b s t r a c t

Vehicle scheduling plays a profound role in public transit planning. Traditional approaches

for the Vehicle Scheduling Problem (VSP) are based on a set of predetermined trips in a

given timetable. Each trip contains a departure point/time and an arrival point/time whilst

the trip time (i.e. the time duration of a trip) is fixed. Based on fixed durations, the result-

ing schedule is hard to comply with in practice due to the variability of traffic and driv-

ing conditions. To enhance the robustness of the schedule to be compiled, the VSP based

on stochastic trip times instead of fixed ones is studied. The trip times follow the proba-

bility distributions obtained from the data captured by Automatic Vehicle Locating (AVL)

systems. A network flow model featuring the stochastic trips is devised to better repre-

sent this problem, meanwhile the compatibility of any pair of trips is redefined based on

trip time distributions instead of fixed values as traditionally done. A novel probabilistic

model of the VSP is proposed with the objectives of minimizing the total cost and maxi-

mizing the on-time performance. Experiments show that the probabilistic model may lead

to more robust schedules without increasing fleet size.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In public transport, the operation planning process commonly includes the following basic activities, usually performed
in sequence: network route design, timetabling (Ibarra-Rojas et al., 2014), vehicle scheduling (Ceder, 2011), crew scheduling
and rostering (Shen et al., 2013). Given precompiled timetables, the Vehicle Scheduling Problem (VSP) is concerned with the
allocation of a fleet of vehicles to carry out all the trips in the timetables in the most efficient way. An efficient schedule
can bring transit operators a considerable saving on property and operating cost.

To clarify the Vehicle Scheduling Problem (VSP), some terminologies need to be introduced. A trip, also called a service
trip in the timetable, is the task unit to be carried out by a vehicle. Each trip contains a start time at its departure point
and an end time at its arrival point, and the duration of a trip is called trip time. The daily work of a vehicle starts from
a pull-out from a depot, followed by a sequence of service trips, and ends at a pull-in to the depot. The waiting time and
empty movement between any two consecutive trips are called an idle time and a deadhead, respectively. In practice, when
the gap between two consecutive service trips is large enough (e.g. more than 3 h), a vehicle is enforced to return to a
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Fig. 1. A network flow model for the traditional VSP.

depot temporarily, which is called a depot-return. The objective of VSP is to minimize the total cost including the fixed cost
for each used vehicle as well as the variable operation cost including the trip times (duration), idle times and deadheads
(Huisman et al., 2004), subject to the following constraints: (1) each trip has to be assigned to exactly one vehicle; (2) each
vehicle has to start its first trip following a pull-out from a depot and end its daily work with a pull-in to the same depot;
(3) the connection of any two consecutive trips in a vehicle must be time feasible or compatible. Fig. 1 illustrates a network
flow model for the traditional VSP, where the letter (A or B) in cycle before a solid arrow denotes the departure time/point
of a trip while the letter in cycle after a solid arrow denotes the arrival time/point of a trip.

The VSP has attracted much research interest over the past several decades. Early research focused on the problem with
a single depot (SDVSP) (Bodin et al., 1983; Gavish and Shlifer, 1979). Since the 1990s, most research has focused on the
problem with multiple depots (MDVSP) (Hadjar et al., 2006; Kliewer et al, 2006), which is proven to be NP hard by Bertossi
et al. (1987). Meanwhile, more realistic characteristics are included, such as fuel consumption (Haghani and Banihashemi,
2002), time windows (Desaulniers et al., 1998; Kliewer et al., 2011), multiple vehicle types (Ceder, 2011; Hassold and Ceder,
2014; Kliewer et al., 2006) and integration with crew scheduling (Huisman and Freling, 2005; Shen and Ni, 2006; Shen and
Xia, 2009).

The VSP is usually formulated as mathematical optimization models, on which Bunte and Kliewer (2009) gave an
overview. In most existing models, each trip is assumed to be fixed (with fixed departure time and arrival time), mak-
ing the resulting schedule hard to be adhered to in practice due to the dreadful variability of traffic and driving conditions.
To reduce the delays, much research has been carried out, which can be roughly classified into the following three groups:
(1) to set more accurate scheduled trip times for vehicle scheduling approaches; (2) to adjust schedules or do rescheduling
during real-time operations; (3) to enhance the robustness of a vehicle schedule.

The trip time is one of the most essential parameters for the compilation of a vehicle schedule. Its accuracy greatly affects
the on-time probability of a vehicle schedule (Shen et al., 2015). This parameter is called scheduled trip time in order to be
distinguished from the actual trip time. There are various ways to set trip times. The early practice is usually conducted by
human schedulers, based on their experiences and common sense (Furth and Muller, 2007). In the last decades, automatic
data collection systems have been increasingly installed. The large amount of collected data helps towards the design of the
more accurate scheduled trip times. In empirical methods, a scheduled trip time is often set as the mean observed trip time
(Kittelson and Associates, 2003), the mean trip time minus 2 (Salicrú et al., 2011), the 85th percentile observed running time
(Furth, 2006), or the mean value plus the standard deviation (Muller and Furth, 2000). Zhao et al. (2006) proposed a waiting
time optimization model for trip time setting, with the objective of minimizing the passenger expected waiting time. Xu and
Shen (2012) devised a trip time setting method, aiming to reduce the variation of departure delay. Although these methods
help to improve the on-time performance of resulting vehicle schedules, they commonly encounter the following puzzle: a
longer trip time tends to increase the cost, while a shorter trip time potentially decreases the punctuality of a schedule.

Apart from setting scheduled trip times in advance, some methods for adjusting schedules or rescheduling during op-
erations have been developed, in which the disturbances affecting trip times are considered. For instances, Huisman et al.
(2004) proposed a dynamic vehicle scheduling approach to solve a sequence of rescheduling problems in real-time. A review
on more real-time vehicle schedule recovery methods can be found in Visentini et al. (2014).

To reduce real-time recovery activities, some efforts are put into enhancing the robustness or delay-tolerance of pre-
compiled schedules. Kramkowski et al. (2009) proposed a heuristic approach to redistribute the links (i.e. break times) of a
given cost-optimal vehicle schedule, in which a first-in-first-out decomposition strategy is applied to even the links between
consecutive trips. Their experimental results show that the delay-tolerance of given vehicle schedules can be enhanced.
Later, Amberg et al. (2011) proposed two decomposition strategies of local decomposition and global decomposition for re-
distributing the links, in which the global decomposition utilizes the delay scenarios published in Huisman et al. (2004).
The proposed method is applied to vehicle scheduling and integrated scheduling of vehicle and crew, and the resulting
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schedules show higher tolerance to delay without increasing the costs of given pre-compiled schedules. However, the degree
of improvement on the delay-tolerance (or robustness) of a schedule is considerably limited by given original schedules. To
compile a robust vehicle schedule from scratch, Naumann et al. (2011) proposed a stochastic programming approach, aiming
to minimize the expected cost consisting of planned costs and disruption costs caused by delays.

Although the existing robust VSP approaches can increase the delay-tolerance of resulting vehicle schedules to a cer-
tain extent, they are all based on a set of fixed trips (with fixed departure times and durations) which implied that the,
resulting schedules are still hard to adhere to in practice due to the large variability of traffic and driving conditions. More-
over, in their VSP model based on fixed trips, the cost of a trip-to-trip link is defined by a fixed link cost (consists of idle
time and deadhead) plus a fixed penalty of delay. Therefore, for every linked two trips assigned to one vehicle as two con-
secutive tasks, the arrival time of the anterior trip will not affect the departure time of the posterior trip, nor its arrival
time.

To enhance the robustness of the vehicle schedule generated, we study the static VSP in a different way by considering
the trips with scheduled departure times and stochastic durations. The stochastic trip times follow the probability distribu-
tions obtained from the data captured by Automatic Vehicle Locating (AVL) systems.

The remainder of the paper is structured as follows. Section 2 proposes a probabilistic model for VSP, in which each
trip time is defined as a random variable. Furthermore, the model is enhanced by considering delay propagation from one
trip to its next consecutive trip. Section 3 develops a solution method, and Section 4 displays experimental results. Some
concluding remarks and possible future work are given in Section 5.

2. Robust vehicle scheduling based on stochastic trip times

With stochastic trip times, the VSP cannot be represented clearly by Fig. 1, therefore, we proposed a new network flow
representation in this section before building a probabilistic model for the VSP with stochastic trip times.

2.1. Network flow representation for VSP with stochastic trip times

A new network flow model is built for VSP with stochastic trip times, which can be denoted as a directed graph G = (N,
A). The set of nodes N contains two types of nodes: trip nodes and depot nodes. The difference from the traditional VSP
model is that a trip node corresponds to a trip with a scheduled departure time and a stochastic trip time characterized
by its trip time probability distribution. The set of arcs A contains four types of arcs: pull-out arcs, pull-in arcs, depot-return
arcs and trip-link arcs. A pull-out arc connects a depot to a trip, a pull-in arc connects a trip to a depot, a depot-return arc is
a long arc (longer than a given time, e.g. 3 h) connecting two trip nodes with a temporary return to a depot in between,
and trip-link arcs are the other arcs connecting two trip nodes. Notice that a depot-return arc is actually a special case of a
trip-link arc, and we distinguish them due to the difference of their costing methods applied commonly in practice. The cost
of a trip-link arc consists of an idle time and a deadhead time (if exist) between two connected trips, while the cost of a
depot-return arc consists of a deadhead time to the depot and a deadhead time back to work from the depot. The time that
vehicle spends temporarily at depot is not costed as an idle time.

Fig. 2 illustrates the new network flow model, where A → [B] or B → [A] represents a trip node, the letter in brackets
denotes an arrival point with a stochastic arrival time while the letter without brackets denotes a departure point with a
scheduled departure time.

Fig. 2. A new network flow model for the VSP with stochastic trip times.
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Fig. 3. Compatibility probability of any two trips i and j.

2.2. Compatibility probability

The generation of arcs is essential for implementing the network flow model for the VSP. An arc between any pair of
trips can be generated if the two trips are compatible. In the traditional VSP model, the compatibility of any pair of trips
can be simply defined as time feasibility, which is deterministic. Let T s

i
and T e

i
denote the scheduled departure time and

arrival time of trip i, respectively. Bertossi et al. (1987) defined the compatibility i!j of any two trips i and j with fixed trip
times as

T e
i + DHi j ≤ T s

j , (1)

where DHij denotes the deadhead time from the arrival point of trip i to the departure point of trip j. If two trips i and j
are compatible, the arc (i, j) exists and its cost Cij can be set as the sum of the deadhead and idle time in between.

In our research, we consider the given trips with stochastic trip times. Consequently, the compatibility of any pair of trips
becomes uncertain, and the compatibility probability is defined to determine the existence of the arcs between trips. Let
stochastic variables ts

i
, te

i
and ti be the departure time, arrival time and duration of trip i, respectively. Suppose the duration

of trip i (i.e. the stochastic trip time ti) follows a known Probability Density Function (PDF) fi(t) and ti ∈ [T min
i

, T max
i

], where

T min
i

and T max
i

denote the minimum and maximum trip times of trip i respectively. A compatibility probability of two trips
i and j can be defined as illustrated in Fig. 3, where the curve denotes the arrival time distribution f e

i
(t) = fi(t − T s

i
) of trip

i. The stochastic arrival time te
i

∈ [T e,ear
i

, T e,lat
i

], where T e,ear
i

= T s
i

+ T min
i

and T e,lat
i

= T s
i

+ T max
i

denote the earliest and latest
arrival times of trip i respectively. Notice that the deadhead time DHij is stochastic in actual operation, which can be defined
as a stochastic variable and treated similarly as the stochastic trip time. However, to concentrate on handling stochastic trip
times, the DHij is assumed to be a deterministic value in this paper.

Given two trips i and j with stochastic trip times, we define the compatibility i!j as te
i

≤ T s
j

− DHi j . Therefore, the

compatibility probability P{i!j} can be defined as the probability of the random event that i and j are compatible, i.e.
P{i! j} = P{te

i
≤ T s

j
− DHi j}, which corresponds to the grey area shown in Fig. 3 and can be expressed as

P{i! j} =
∫ T s

j −DHi j

0
f e
i (t)dt =

∫ T s
j −T s

i −DHi j

0
fi(t)dt, (2)

where P{i! j} = 0 if T s
j

− DHi j < T e,ear
i

and P{i! j} = 1 if T s
j

− DHi j > T e,lat
i

.

Between the trips i and j, an arc (i, j) is defined if P{i!j} > 0; no arc exists, otherwise. Each arc (i, j) is also associated
with an incompatibility probability P{i! j} = 1 − P{i! j}, where i! j denotes the incompatibility of trips i and j.

As already mentioned, a depot-return is enforced in practice, when the gap between two consecutive service trips is large
enough. Let Tdr be the minimal time required for a temporary depot return at a depot, DHid be the deadhead time from the
arrival point of trip i to depot d, and DHdj be the deadhead time from depot d to the departure point of trip j. An arc (i, j) is

defined as a depot-return arc if T s
j

− T e,lat
i

− (DHid+DHdj) ≥ T dr , otherwise it is defined as a trip-link arc. For any depot-return

arc (i, j), its compatibility probability is defined as P{i! j} = 1.

2.3. A probabilistic model for VSP with stochastic trip times

To establish our probabilistic model for VSP with stochastic trip times, a cost function for any arc (i,j) is first defined as
follows:

Ci j =






DHi j if (i, j) is a pull − out arc, i ∈ D, j ∈ T

DHi j if(i, j)is a pull − in arc, i ∈ T and j ∈ D

DHid + DHdj if(i, j)is a depot − return arc, i, j ∈ T, d ∈ D

DHi j + E(IDi j) if(i, j)is a trip − link arc, i, j ∈ T

(3)

where T denotes the set of trips, D denotes the set of depots and DHij denotes the deadhead between trips i and j. For the
cost of a depot-return arc, the time spent temporarily at depot is not included as usual.
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The cost of a trip-link arc (i, j) consists of a deadhead time DHij which is a deterministic value and an idle time IDij which
is a stochastic variable. If i!j, then IDi j = T s

j
− te

i
− DHi j; otherwise, set IDij to be 0. As IDij is a random variable, it cannot be

directly minimized. We therefore use its expected value E(IDij) as the cost of idle time formulated as

E(IDi j) =
∫ T s

j −DHi j

0
(T s

j − te
i − DHi j) f e

i (t)dt =
∫ T s

j −T s
i −DHi j

0
(T s

j − T s
i − t − DHi j) fi(t)dt. (4)

As already defined, an arc exists if P{i!j} > 0 although it may be time infeasible. Hence, we have to penalize the infeasi-
bility of the arcs. Let IFij be the infeasible time of an arc (i, j). If i!̄ j, then IFi j = te

i
− T s

j
+ DHi j; otherwise IFij = 0. Clearly, IFij

is also a random variable which cannot be minimized directly, and thus we can minimize its expected value E(IFij). However,

to even the infeasible time amongst the arcs, we penalize the stochastic infeasible time by using E(IF 2
i j
) instead of E(IFij),

as suggested in Huisman et al. (2004) and Naumann et al. (2011). Therefore, the penalty of the infeasible time of arc (i,j)
Pi j = E(IF 2

i j
) is defined as

E(IF 2
i j ) =

∫ +∞

T s
j
−DHi j

(te
i − T s

j + DHi j)
2

f e
i (t)dt =

∫ +∞

T s
j
−T s

i
−DHi j

(T s
i + t − T s

j + DHi j)
2

fi(t)dt (5)

Let P denote the set of pull-out arcs, Q denote the set of pull-in arcs and R denote the union of the set of trip-link arcs
and the set of depot-return arcs. Given a set of arcs A = P ∪ Q ∪ R, the VSP with stochastic trip times can be modelled as

min
∑

(d, j)∈P

Cvehxdj +
∑

(i, j)∈A

Ci jxi j + α ·
∑

(i, j)∈R

Pi jxi j (6)

s.t.
∑

i:(i, j)∈A

xi j −
∑

i:( j,i)∈A

x ji = 0, ∀ j ∈ T (7)

∑

j:(d, j)∈P

xdj −
∑

i:(i,d)∈Q

xid = 0, ∀d ∈ D (8)

∑

i:(i, j)∈A

xi j = 1, ∀ j ∈ T (9)

xi j ∈ {0, 1}, ∀(i, j) ∈ A (10)

where decision variable xij equals 1 if arc (i, j) is selected; 0 otherwise. Formulae (7)–(10) are constraints the same as those
in traditional network flow models of VSP with fixed trip times. Formula (7) and Formula (8) are the flow-conservation
constraints. Formula (9) is the cover constraints requiring that each trip must be covered exactly by one vehicle, and Formula
(10) is the 0–1 constraint for decision variables. Formula (6) is the objective function, where Cveh is a large constant to
penalize the utilization of an additional vehicle, and α is a non-negative (usually larger than 1) weight to adjust the penalty
of infeasible time. The objective function may serve as a trade-off between our two conflict objectives: one is to minimize
the operating cost while another is to maximize the on-time performance.

From the vehicle scheduling point of view, the on-time performance referring to the punctual departure of trips can be
measured by departure delay. A vehicle schedule that may cause less departure delays is defined as a robust schedule in this
study.

In the traditional network flow model of VSP with fixed trip times, minimizing the cost is the only objective since
infeasible arcs are not allowed at all. However, in our proposed model, with the aid of given trip time probability, an arc is
defined if P{i!j} > 0 although it may be time infeasible. This provides more opportunities for selecting long arcs without
increasing the cost. With the same cost (mainly determined by the fleet size) and the same trip time distributions, the
longer the arcs are, the more robust a schedule is. Therefore, the resulting schedule based on the probabilistic model may
be more robust.

2.4. An enhanced probabilistic model for VSP featuring delay propagation

Given any pair of trips (i, j) that are successively worked by one vehicle, suppose that trip i departs on time at its sched-
uled departure time T s

i
, and the PDFs for trip time and arrival time of trip i are fi(t) and f e

i
(t) = fi(t − T s

i
) respectively. If trip

i arrives on or before T s
j

− DHi j (i.e. i!j), trip j can depart on time at its scheduled departure time T s
j
; otherwise, the depar-

ture time of trip j has to be postponed or delayed. Such a delay may propagate from one trip to its next consecutive trip,
which is called delay propagation. During the execution of a vehicle schedule, the delay on a trip can propagate perpetually
until it is absorbed by an idle time (i.e. the next trip can depart on time) or the daily work of the vehicle ends.

It should be noticed that the delays amongst different vehicles may be correlated in real-time operation. As Xuan et
al. (2011) indicated bus systems are naturally unstable in the sense that a small disturbance such as a traffic disruption
can start a vicious cycle that causes bus bunching. However, in this study, the delay propagation to multiple trips among
different vehicles is not considered as otherwise the problem will become extremely complex.



24 Y. Shen et al. / Transportation Research Part B 85 (2016) 19–31

Studying the delay propagation amongst the trips on the same vehicle, the departure time of trip j becomes a stochastic
variable affected by the arrival probability of trip i, instead of a fixed scheduled departure time. The PDF for departure time
of trip j can be expressed as a piecewise function of f e

i
(t) formulated as

f s
j (t) =






0 if t < T s
j

∫ T s
j −DHi j

0 f e
i (t)dt if t=T s

j

f e
i (t − DHi j) if t > T s

j

(11)

Meanwhile, the delay on departure time of trip j may further postpone its arrival time. Therefore, it is no longer adequate
to calculate the PDF for arrival time of trip j as f e

j
(t) = f j(t − T s

j
). A new expression featuring delay propagation can be as

Formula (12), which is a function of its own PDFs for the departure time and the trip time.

f e
j (t) =

∫ t

0
f s

j (τ ) f j(t−τ |ts
j = τ )dτ (12)

Using Formula (11) to substitute f s
j
(t), the PDF for the arrival time of trip j is

f e
j (t) =

[∫ T s
j −DHi j

0
f e
i (t)dt

]
f j(t − T s

j |i! j) +
∫ t

T S
j

f e
i (τ − DHi j) f j(t−τ |i! j)dτ . (13)

From Formula (13), we can see that the arrival time probability of any trip is the function of its own trip time probability
and the arrival time probability of its previous trip. Obviously, this is a recursive function.

Therefore, the cost function for any arc (i,j) can remain the same as Formula (3), where the expected idle time E(IDij),
representing the cost of the idle time, is expressed as

E(IDi j) =
∫ T s

j −DHi j

0
(T s

j − te
i − DHi j) f e

i (t)dt, (14)

where f e
i
(t) is the PDF for the arrival time of trip i as presented in Formula (13).

To express more straightforwardly the delay propagation associated to any arc (i, j), a departure delay (DDij) is employed

instead of the infeasible time (IFij) used in the previous section. If i!̄ j, then DDi j = te
i

− T s
j

+ DHi j; otherwise DDij= 0, where

te
i

is the stochastic time decided by Formula (13). Similarly, to even the departure delay amongst the arcs, we penalize the

stochastic departure delay of an arc (i, j) by using the expectation of squared departure delay, which is defined as Pi j = E(DD2
i j
)

and expressed as

E(DD2
i j) =

∫ +∞

T s
j
−DHi j

(te
i − T s

j + DHi j)
2 f e

i (t)dt. (15)

Consequently, the enhanced model is built, which can be expressed the same as in Formulae (6)–(10), but has consider-
able features. In the previous probabilistic model, the cost or the penalty of any trip-link arc (i,j) contains only one stochastic
variable, i.e. the trip time probability of trip i. Therefore, the cost Cij and the penalty Pij can be determined when the trip
time probability of trip i is determined. However, in this enhanced model featuring delay propagation, the Cij and Pij are
the functions of the arc (i,j) and its previous arcs. Unfortunately, the previous arcs cannot be determined before a schedule
is produced. Hence, this model cannot be solved directly by the existing vehicle scheduling approaches, which are all based
on the deterministic model. To solve the model, a heuristic approach is developed in the following section.

3. Solution method

This section proposes a hybrid approach for vehicle scheduling, which integrates Integer Linear Programming (ILP) ap-
proaches and heuristic methods. The basic idea is as follows: an initial schedule is first compiled using a matching based
heuristic, and then is refined by an iterative greedy local search.

3.1. Compilation of an initial schedule

A matching based heuristic method, proposed by Ball et al. (1983) for the integrated vehicle and crew scheduling prob-
lem, is adapted to produce an initial schedule for the VSP. The method consists of two stages: tier partitioning and trip
matching.

The tier partitioning stage is to partition all the trips, which are sorted by departure times in advance, into different tiers.
Each trip is considered in turn until it is classified into a certain tier. The first trip belongs to tier 1. For any unclassified trip
j, a backward search is applied, which starts from the currently largest existing tier L to tier 1 by the following steps:

Step 1: Let l = L;
Step 2: If a trip i in tier l satisfying P{i!j} > 0 can be found, trip j is classified into tier l+1 and stop;
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Fig. 4. Illustration of a matching problem between two adjacent tiers.

Step 3: If l = 1, trip j is classified into tier 1, which means that it can only be operated as the first trip of a vehicle; otherwise
let l = l – 1 and go to Step 2.

The trip matching stage is to form and solve a series of matching problems for any tier (from the first to the last second
tier) with its successive tier in sequence for linking trips into an initial schedule. Given two adjacent tiers l and l + 1, a
matching problem is built by forming a bipartite graph as illustrated in Fig. 4, where each tier contains a set of nodes. A
node in Tier l is a trip-chain consisting of the trips in Tier l and its previous tiers; a node in Tier l + 1 corresponds to a trip.
The arcs represent all the potential links between the nodes in the two tiers.

The matching problem is concerned with the selection of a set of arcs with the minimum cost, subject to that no selected
arcs can share the same node. The solution is a set of new trip chains, which constitutes the new nodes in Tier l + 1. An
initial schedule is produced when the matching problem regarding the last two tiers is solved.

3.2. Solution refinement

After the initial solution is constructed, an iterative greedy local search method is proposed to refine the schedule. The
basic idea is to break part of the arcs in the current schedule and then to re-link the nodes by solving the sub-problem
containing a small subset of nodes using an exact ILP approach. Such a procedure will repeat iteratively until a termination
criterion is met. Two methods for breaking and re-linking are developed and applied in sequence.

The first method contains the following steps. Suppose the current schedule contains n vehicles denoted by
V = (v1,v2,…,vn). Each vehicle vi has an associated evaluation value ci, which is defined as the sum of the evaluation values
(consisting of costs and penalties) of all the arcs on the vehicle.

Step 1: Let i = 1 and j = i + 1;
Step 2: Select a pair of vehicles vi and vj;
Step 3: Form a sub-problem Gk using all the nodes and their corresponding arcs in vi and vj;
Step 4: Solve Gk and get a new partial schedule S’ with evaluation value c’, which may contain one or two new vehicles vi’

and vj’;
Step 5: If c’<ci+cj, then update the vehicle list V by moving vi’ and vj’ to the tail of V and removing vi and vj from V, and

then let i remain the same (but vi will represents a different vehicle), let j = i+1, go to Step 2; otherwise, go to Step
6;

Step 6: If j<n, let j = j+1 and go to Step 2; otherwise, go to Step 7;
Step 7: If i<n -1, let j = i+2 and i = i+1, go to Step 2; otherwise, stop.
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Fig. 5. Illustration of the refinement method with destruction and reconstruction.

The second method contains three operators: arc selection, destruction and reconstruction. A set of arcs are first selected
according to the following criteria: the first is to select all the depot-return arcs, which are undesired by operators, the
second is to select the other undesired arcs with the largest costs or penalties, the third is to select randomly a certain
number of arcs. The total amount of selected arcs is restricted to a certain number (say 50 in this case to fit with an ILP
solver’s ability). Then, by breaking the selected arcs, the current schedule is destroyed into a set of blocks (a block contains
several consecutive trips). Next, a new problem is formed, in which each block is regarded as a node. The reconstruction
step re-links the blocks by solving a network flow problem. The method is demonstrated in Fig. 5.

After the reconstruction at each iteration, a new schedule S’ will be generated from the previous schedule S. Let F(S) and
F(S’) denote the objective values of S and S’, respectively. S’ is accepted if F(S’) < F(S); otherwise S’ is accepted at probability
exp{[(F(S) – F(S’)]/Tn}, where Tn = α∗Tn–1 represents the temperature at the nth iteration, To is the initial temperature and α
is the cooling rate. This method terminates if schedule cannot be improved for a certain number of iterations or a maximum
number of iterations has been reached.

4. Experiments and results

A series of experiments have been carried out based on a case study on Route 4 of Haikou Bus (HKB4). HKB4 is a key
route of Haikou city in China, which operates over 450 trips and carries around 46,000 passengers per day. 28 buses are
currently deployed on the route and all of them are equipped with AVL devices. The scheduled headway is about 4 to 5 min
at most time throughout the day, with a maximum of 6 min in the afternoon off-peak period.

Experiments on the traditional deterministic VSP model (DVSP for short) are first presented in Section 4.1. Experiments
on the probability VSP model without considering delay propagation (PVSP for short) are then presented in Section 4.2.
At the end, experiments on the probability VSP model considering delay propagation (PVSP-DP for short) are presented in
Section 4.3.

4.1. Experiments on the deterministic model with fixed trip times (DVSP)

This section aims to generate benchmark schedules based on the DVSP model. CPLEX, a widely used commercial mathe-
matical programming optimizer, is employed to solve the model.

Scheduled trip times are essential for the DVSP model. To automatically set a series of scheduled trip times, the trip time
distributions need to be obtained in advance by the following steps: a sample set of the trip times is firstly extracted from
historical AVL data, then Homogeneous Running Time (HRT) periods, each of which holds the trip times with an identical
distribution, are calculated by the approach proposed in Xu and Shen (2012), and finally the trip time probability distribution
within each HRT period is calculated. In the case of HKB4, the AVL data was recorded during May to August 2010, and a
sample set of 11585 trips were formed. Table 1 shows the HRT periods and the corresponding trip times, where AVG and
STD denote the average trip time and the standard deviation.

Next, the scheduled trip time for each HRT period can be generated, which is commonly decided by rules of thumb
(Furth, 2006).The following two rules-of-thumb (Muller and Furth, 2000) are often used by schedulers in practice: the first
one uses the 85th percentile of the entire trip time (i.e. 85% of scheduled trips are expected to be able to completed on
time), and the second one uses the average value (AVG) plus standard deviation (STD) of trip times. Two groups of the trip
times are produced as shown in Table 2.

To produce more benchmark schedules, we adjust the two groups of trip times in Table 2 with +/– 1 min (1 min is
commonly the minimum unit in a vehicle schedule). Therefore, six groups of scheduled trip times are produced, which
correspond to six VSP instances (T1 to T6) as shown in Table 3, where all the times are in minutes, T1 to T3 are based on
the rule-of-thumb 1, and T4 to T6 are based on the rule-of-thumb 2. Table 3 also presents the computational results generated
by CPLEX 12.4, where the service trip time is the sum of all scheduled trip times in the corresponding schedule. Note that
during the scheduling process, a 2-min recovery time is set at the end of each trip to improve the on-time performance of
the resulting schedule.
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Table 1

HRT periods of HKB4 obtained based on the AVL data.

Outbound Inbound

HRT # Period start Period end Trip time HRT # Period start Period end Trip time

AVG STD AVG STD

1 05:45 07:15 43 2.2 1 05:45 07:30 43 4.2

2 07:15 07:30 48 1.9 2 07:30 08:15 48 3.7

3 07:30 11:45 51 3.0 3 08:15 11:15 45 4.0

4 11:45 14:15 48 2.3 4 11:15 11:30 48 4.9

5 14:15 16:45 54 3.0 5 11:30 14:00 43 4.8

6 16:45 17:00 59 4.4 6 14:00 17:15 48 4.5

7 17:00 18:30 63 4.1 7 17:15 18:00 53 4.2

8 18:30 18:45 59 3.9 8 18:00 18:30 49 5.0

9 18:45 20:15 53 3.0 9 18:30 21:45 45 4.7

10 20:15 21:00 57 3.6 10 21:45 22:15 42 3.3

11 21:00 22:00 61 4.4 11 22:15 23:30 36 2.8

12 22:00 23:30 55 4.2

Table 2

Fixed trip times produced by rules-of-thumb.

Rule-of-thumb 1 (85%) Rule-of-thumb 2 (AVG+STD)

HRT #

(Outbound)

Trip time

(min)

HRT #

(Inbound)

Trip time

(min)

HRT #

(Outbound)

Trip time

(min)

HRT #

(Inbound)

Trip time

(min)

1 46 1 46 1 45 1 47

2 50 2 51 2 50 2 52

3 54 3 47 3 54 3 49

4 51 4 48 4 50 4 53

5 57 5 45 5 57 5 48

6 62 6 49 6 63 6 52

7 67 7 56 7 67 7 57

8 62 8 53 8 63 8 54

9 56 9 47 9 56 9 50

10 59 10 44 10 61 10 45

11 64 11 39 11 65 11 39

12 59 12 59

Table 3

Experimental results of DVSP – produced by CPLEX.

Problem Rule-of-thumb Trip time adjustment Fleet size Service trip time E(ID) Dead-head Cost Penalty Objective value

T1 Rule-of-thumb 1 −1 27 22816 2313 1980 4293 9577 45659

T2 0 28 23270 2698 2040 4738 6713 42807

T3 1 29 23724 3372 2100 5472 3497 39718

T4 Rule-of-thumb 2 −1 28 23290 2762 2100 4862 5637 41317

T5a 0 28 23744 3315 2040 5355 3627 38796

T6 1 29 24198 3611 2250 5861 2769 39015

a The best-known schedule.

From Table 3, we can see that the service trip time of each schedule is different due to the adjustments of +/– 1 min
to the scheduled trip times. To compare the schedules produced by all the experiments in this paper with a consistent
measurement, the objective value of Formula (6) is employed, where α = 1.5 is a constant designated based on a series
of experiments, and the enhanced probabilistic model for VSP featuring delay propagation is employed since delay prop-
agations exist in real-time operation. Moreover, to give some insight into the objective value, each of its elements is also
displayed, including the feet size (assuming each vehicle costs 1000 min), the cost and the penalty. The cost is the sum of
the cost of each arc defined by Formula (3), where the E(ID) is calculated using Formula (14) and the deadhead is the sum
of all kinds of deadhead. The penalty (i.e. E(DD2)) is calculated using Formula (15), which is served as the measurement of
on-time performance.

We can see from Table 3 that the six results of T1 to T6 show trade-offs between the cost and penalty. Let us discuss
which one should be regarded as the best benchmark schedule from the view of human schedulers. In vehicle scheduling,
minimizing the fleet size with reasonable on-time performance (measured by the penalty) is the overriding objective. Al-
though T1 has the smallest fleet size, it cannot be regarded as the best or suitable schedule since its on-time performance
is too low to be acceptable in practice. In fact, the currently deployed fleet size is 28 vehicles in this case. Meanwhile, T3
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Table 4

Experimental results of PVSP (produced by CPLEX).

Index α Based on the PVSP model RPD over the best-known schedule

Fleet size Cost Penalty Objective value Cost Penalty Objective value

R1 0.2 27 5394 6098 41541 0.73% 68.11% 7.08%

R2 0.3 28 5102 3708 38664 −4.72% 2.22% −0.34%

R3 0.4 28 5107 3693 38646 −4.63% 1.80% −0.39%

R4 0.5 28 5215 3461 38406 −2.61% −4.59% −1.01%

R5 0.6 28 5271 3358 38308 −1.57% −7.43% −1.26%

R6 0.7 28 5316 3288 38248 −0.73% −9.35% −1.41%

R7 0.8 28 5409 3159 38147 1.01% −12.91% −1.67%

R8 0.9 28 5475 3082 38098 2.24% −15.03% −1.80%

R9 1 28 5495 3060 38085 2.61% −15.64% −1.83%

R10 1.1 28 5505 3050 38080 2.80% −15.92% −1.85%

R11 1.2 28 5587 2978 38054 4.33% −17.90% −1.91%

R12 1.3 28 5623 2949 38046 5.00% −18.71% −1.93%

R13 1.4 28 5684 2903 38038 6.14% −19.98% −1.95%

R14 1.5 28 5772 2842 38035 7.79% −21.65% −1.96%

R15 1.6 29 5929 2110 38094 10.72% −41.83% −1.81%

Avg. 28 5459 3316 38433 2.03% −8.59% −0.94%

and T6 are also out of the consideration due to one more vehicle is needed. With the same suitable fleet size, minimizing
penalty has usually priority over minimizing cost. Therefore, in consideration of a trade-off between the cost and on-time
performance, T5’s schedule can be regarded as the best-known schedule of this case since it has the highest on-time perfor-
mance with an expected fleet size. This result is also consistent with that of comparing the objective value, i.e. T5’s schedule
has the lowest objective value.

4.2. Experiments on the probabilistic model without considering delay propagation (PVSP)

To verify the effectiveness of the PVSP model, a series of experiments are carried out on the HKB4 problem. The schedules
are also produced by CPLEX and to be compared with the best-known schedule obtained based on the DVSP model.

The PVSP model contains a non-negative empirical parameter α as shown in Formula (6). The choice of α value is a
trade-off between the cost and on-time performance of the resulting schedule. If α is set to 0, the PVSP model is equivalent
to the DVSP model with the scheduled trip times setting as the minimum trip times. In this case, a feasible schedule with
minimum cost can be obtained, but the on-time performance of the schedule is usually very low. Along with the increment
of α value, the on-time performance of the resulting schedule will be enhanced while the cost is compromised. Since
minimizing the number of vehicles is the overriding objective, the best α value should be able to keep the highest on-time
performance using a reasonable small fleet size. Such a value is problem-specific but can be obtained from experiments. In
this HKB4 instance, 15 values of α within the range of 0.2 to 1.6 are investigated, which are indexed from R1 to R15. The
compiled schedules are listed in Table 4, where the Relative Percentage Deviations (RPDs) over the best-known schedule
(T5’s schedule in Table 3) are provided, and all the times are in minutes.

It can be seen from Table 4 that with the increment of α values, the costs are increased while the penalties are decreased,
except for R1. With the smallest α = 0.2, the R1’s schedule has a smallest fleet size but the highest penalty, which means its
on-time performance is the worst. In this case, the R1’s schedule cannot be executed properly in practice, and thus it will be
removed. As for R15, the schedule has the highest on-time performance due to using the largest α = 1.6, but it should also
be removed since one more vehicle is needed than expected. Therefore, in this case, α should be selected from the range
between 0.3 and 1.5, where all the schedules from R2 to R14 have the same fleet size with different operating costs. When
α reaches the largest value (i.e. α = 1.5), R14 corresponds to the schedule with the highest on-time performance, hence
it is regarded as the best schedule in Table 4 and 1.5 is the best α value selected for this problem instance. Therefore, we
can conclude that given a suitable α value, the PVSP model may surpass considerably the DVSP model in terms of on-time
performance with the same fleet size.

Furthermore, Fig. 6 gives an insight into the schedules in consideration of the two conflict items: cost and penalty, where
only the schedules with expected number of vehicles (i.e. 28 vehicles) are compared. Fig. 6 shows the Pareto fronts for the
DVSP and PVSP models, where the non-dominated schedules for both models are cycled.

From Fig. 6, we can see that the best-known schedule T5 of the DVSP is dominated by the results of the PVSP, while the
other two schedules are non-dominated but have considerably larger penalties. All of the PVSP’s results are non-dominated
solutions, and have considerably better on-time performance (measured by the penalty) than the DVSP’s results.

4.3. Experiments on the enhanced probabilistic model with delay propagation (PVSP-DP)

Since the existing approaches are all based on the deterministic model, which cannot be used to solve the PVSP-DP
model directly, we proposes a new heuristic approach and implement it using C# on a 2.0 GHz PC with 2 GB RAM under
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Fig. 6. Results produced by CPLEX based on the DVSP and PVSP models.

Table 5

Experimental results of DVSP (produced by CPLEX and the heuristic approach).

Test problem Fleet size Cost Elapse time (s)

CPELX Heuristic CPLEX Heuristic RPD CPLEX Heuristic

T1 27 27 4293 4500 4.82% 335 1581

T2 28 28 4738 5042 6.42% 333 1608

T3 29 29 5472 6130 12.02% 340 1592

T4 28 28 4862 5148 5.88% 331 1588

T5 28 28 5355 5669 5.86% 336 1578

T6 29 29 5861 6712 14.52% 327 1582

Avg. 27 27 5096 5533 8.25% 334 1588

Windows XP, on which the CPLEX 12.4 is employed to solve the embedded small ILP problems. The proposed heuristic
approach is first tested and then applied to the two proposed probabilistic models of PVSP and PVSP-DP.

4.3.1. The proposed heuristic approach vs. CPLEX

Based on the DVSP model, this section is to verify the effectiveness of the proposed heuristic approach by comparing its
schedules with those produced by CPLEX for problems T1–T6 listed in Table 3. The comparing results are shown in Table 5.

It can be seen from Table 5 that the fleet size of the schedules generated by the heuristic approach are the same as the
schedules generated by CPLEX for all the six problems, while the average RPD in terms of cost is 8.25%. Since minimizing
the fleet size is an overriding objective for the DVSP, the results produced by the proposed heuristic approach are good
enough, and thus this approach is qualified to be employed to evaluate the probabilistic models.

We can also see from Table 5 that the average elapsed time for the heuristic approach is 1588 s while the CPLEX’s
execution time is only 334 s on average. Hence, the proposed hybrid method still has room to improve, especially in terms
of execution speed.

4.3.2. The PVSP model vs. the PVSP-DP model

This section aims to compare the two probabilistic models: PVSP and PVSP-DP. Using the same α values (indexed from
R1 to R15) as listed in Table 4, the heuristic approach produces 15 schedules based on the PVSP and PVSP-DP models
respectively as shown in Table 6, the RPDs are computed over the best known schedule (i.e. T5’s schedule in Table 3).

From Table 6, we can see that with the same α value, the fleet size of the schedules for PVSP and PVSP-DP are all the
same, therefore we focus on comparing the cost and the penalty, as well as the objective value. For both DVSP and DVSP-DP
models, R1’s (i.e. α = 0.2) schedules have the smallest fleet size, however the on-time performance are also the worst for
each model respectively, hence the two schedules are to be removed. R15’s schedules are also to be removed, where the fleet
size exceeds the expectation. With the expected fleet size, R14 (i.e. α = 1.5) corresponds to the schedule with the highest
on-time performance. The RPDs of the schedules for R14 based on DVSP and DVSP-DP in terms of cost are 11.82% and 12.59%
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Table 6

Experimental results of PVSP and PVSP-DP (produced by the heuristic approach).

Index α Fleet size Cost Penalty Objective value

PVSP PVSP-DP PVSP RPD PVSP-DP RPD PVSP RPD PVSP-DP RPD PVSP RPD PVSP-DP RPD

R1 0.2 27 27 5618 4.91% 5670 5.88% 5997 65.34% 5857 61.48% 41614 7.26% 41456 6.86%

R2 0.3 28 28 5314 −0.77% 5373 0.34% 3641 0.37% 3507 −3.31% 38775 −0.05% 38634 −0.42%

R3 0.4 28 28 5323 −0.60% 5385 0.56% 3614 −0.37% 3474 −4.23% 38744 −0.13% 38596 −0.52%

R4 0.5 28 28 5404 0.92% 5456 1.89% 3413 −5.90% 3299 −9.04% 38524 −0.70% 38405 −1.01%

R5 0.6 28 28 5449 1.76% 5512 2.93% 3327 −8.29% 3192 −12.00% 38439 −0.92% 38300 −1.28%

R6 0.7 28 28 5485 2.43% 5546 3.57% 3267 −9.92% 3137 −13.53% 38386 −1.06% 38251 −1.40%

R7 0.8 28 28 5597 4.52% 5649 5.49% 3113 −14.19% 2983 −17.77% 38266 −1.37% 38123 −1.73%

R8 0.9 28 28 5656 5.62% 5709 6.61% 3057 −15.73% 2911 −19.76% 38241 −1.43% 38075 −1.86%

R9 1 28 28 5715 6.72% 5755 7.47% 3014 −16.91% 2863 −21.06% 38236 −1.44% 38050 −1.92%

R10 1.1 28 28 5731 7.02% 5782 7.97% 2999 −17.33% 2838 −21.76% 38229 −1.46% 38039 −1.95%

R11 1.2 28 28 5822 8.72% 5877 9.75% 2919 −19.54% 2759 −23.95% 38200 −1.54% 38015 −2.01%

R12 1.3 28 28 5876 9.73% 5928 10.70% 2874 −20.77% 2717 −25.09% 38187 −1.57% 38004 −2.04%

R13 1.4 28 28 5907 10.31% 5952 11.15% 2851 −21.39% 2699 −25.58% 38184 −1.58% 38001 −2.05%

R14 1.5 28 28 5988 11.82% 6029 12.59% 2796 −22.92% 2647 −27.02% 38182 −1.58% 38000 −2.05%

R15 1.6 29 29 5951 11.13% 5951 11.13% 2109 −41.87% 2109 −41.87% 38114 −1.76% 38114 −1.76%

Avg. 28 28 5655 5.62% 5704 6.53% 5997 −9.96% 5857 −13.63% 41614 −0.62% 41456 −1.01%
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Fig. 7. Results produced by the heuristic approach based on the DVSP, PVSP and PVSP-DP models.

respectively, in terms of penalty are –22.92% and –27.02% respectively, and in terms of the objective value are –1.58% and
–2.05% respectively. These results demonstrate that both probabilistic models can produce the schedules with considerable
higher on-time performance than the best known schedule based on DVSP, while the schedules’ costs are larger but with
the same fleet size. When considering delay propagation, the PVSP-DP model can increase the on-time performance further
than the PVSP model with a little compromise on the cost.

Furthermore, in Fig. 7 the schedules with 28 vehicles are compared in consideration of the cost and penalty. Fig. 7 shows
the Pareto fronts for the DVSP, PVSP and PVSP-DP models, where the non-dominated schedules for the three models are
cycled.

From Fig. 7, we can see that 21 out of 29 schedules are non-dominated, among which 13 are produced based on DVSP-DP,
6 are based on PVSP and 2 are based on DVSP. Obviously, the two probabilistic models generally surpass the DVSP model.
In comparison of the two probabilistic models, under most circumstances the schedules produced by the PVSD-DP model
are more robust due to the consideration of delay propagation.

5. Conclusion

This paper proposes two probabilistic models, namely PVSP and PVSP-DP, for vehicle scheduling with stochastic trip
times. The stochastic trip times follow the probability distributions obtained by the trip time measurement based on AVL
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data in advance. A case study on real instances of Haikou bus Route 4 (HKB4) has been reported, where the trip time
distribution was obtained from the AVL data collected during May to August 2010.

Experimental results on a set of problem instances derived from the HKB4 case show that both of the probabilistic mod-
els can produce the schedules with the same fleet size but considerably higher on-time performance than the best known
schedule generated by the traditional deterministic VSP model (the RPDs in terms of penalty are –22.92% and –27.02%, re-
spectively). Comparing the two probabilistic models, the one that considers delay propagation (i.e. PVSP-DP) may further
increase the on-time performance, while the fleet size remains the same but with a little compromise in the operating cost.
Moreover, with the aid of the probabilistic models, human scheduler can be saved from the work of determining scheduled
trip times, which is non-trivial and often frustrates the scheduler.

Since the existing vehicle scheduling approaches are mostly developed to solve the traditional deterministic VSP, none of
them can be directly used to solve the proposed PVSP-DP model. Therefore, this paper has developed a hybrid approach that
combines search by integer linear programming and search by heuristics. Although the proposed approach has still room for
further improvement, especially on the aspect of search efficiency, experiments show that it can produce the results close
to those produced by CPLEX and hence can be used as a solver to the PVSP-DP model.
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