
Variable Neighbourhood Search: A Case Study for a

Highly-Constrained Workforce Scheduling Problem

Kenneth N. Reid, Jingpeng Li

Division of Computing Science and

Mathematics

University of Stirling

Stirling FK9 4LA, UK

Jerry Swan

Department of Computing Science

University of York

York YO10 5GH, UK

Alistair McCormick, Gilbert Owusu

BT Research & Innovation

PP MLB3/PP12, Orion Building

Adastral Park, Martlesham Heath, IP5

3RE, UK

Abstract— This paper describes a Variable Neighbourhood

Search (VNS) combined with Metropolis-Hastings acceptance to

tackle a highly constrained workforce scheduling problem typical

of field service operations (FSO) companies. A refined greedy

algorithm is firstly designed to create an initial solution which

meets all hard constraints and satisfies some of the soft constraints.

The VNS is then used to swap out less promising combinations,

continually moving towards a optimal solution until meeting

finishing requirements, which are either a satisfactory mean

fitness set as a parameter, or a time allowance of one hour. The

results of this approach are promising when compared to the

stand-alone greedy algorithm.

Keywords—Variable Neighbourhood Search, Personnel

Scheduling, Engineer Rostering, Metaheuristic

I. INTRODUCTION

When there are tens or hundreds of employees, with
hundreds or thousands of shifts requiring employee allocations,
an exponential number of possible solutions emerge. In order to
decide which of the numerous potential and acceptable solutions
are closer to optimal; definitions of preferable solution attributes
are required. These criteria are known as Hard Constraints
(HCs) and Soft Constraints (SCs) [1]. HCs are often simpler
requirements which in this case are Boolean in nature; where a
fail will cause the solution to become unusable due to
contractual obligations, legal obligations or other highly
important constraints. In the case of employee scheduling, an
example would be breaking employment laws such as the legal
number of hours an employee can work per week. SCs are the
measurements of multiple criteria which describe a usable
solution and its attributes on a percentage scale of potential
fitness. An example of a SC in this problem is aiming to satisfy
the workforce by ensuring as many employees have consecutive
rest days per week as is possible, as opposed to rest days with
working day in between them. While there are solutions which
exist to deal with subsets of the constraints presented, this case
study provides a solution to the unique problems large number
of specific constraints.

Personnel scheduling problems have been widely studied in
recent decades, and there have been calls for further research
into multiple decision variables that are integrated into the
solution engine [2]. Demand forecasting being one such
suggested topic for further study, which we have implemented

in this case study. Multiple fields have benefited from the use of
metaheuristics to solve large complex rostering scheduling
problems, including nurse rostering [3,4,5], truck scheduling [6]
and exam timetabling [7,8]. It goes to follow that a similarly
highly constrained search optimization problem in engineer
rostering can benefit from similar techniques.

There have been multiple solutions provided to similar
problems, using techniques such as tabu search [9], simulated
annealing [10], as well as different applications of variable
neighbourhood search [11]. These examples of metaheuristics
have a proven track record with less constrained and smaller
search spaces but the use of a greedy algorithm to create an
initial solution space which is further optimized by Variable
Neighbourhood Search (VNS), yet monitored with Metropolis-
Hastings acceptance shows promise with the highly constrained
search space unique to this problem.

A further advantage of this approach is the combination of
benefits from both algorithms: A greedy algorithm creating the
initial solution set is limited by the inability to move around the
solution space to a closer to optimal result, often because of a
requirement to cross an infeasible area. The further use of VNS
allows a broader search, furthering the potential solution space
by use of three techniques: Swapping shifts between two
separate employees on an individual day (e.g. employee A’s day
shift and employee B’s night shift); moving an employee to
work a separate day entirely (e.g. moving Employee A from a
Monday shift to a Saturday shift). Finally, Metropolis-Hastings
acceptance is used to decrease the likelihood of the more
disruptive approach of swapping of days being used as opposed
to swapping shifts, which is less disruptive. This is important to
prevent the accidental corruption of a good solution into a
worsened one. Metropolis-Hastings acceptance is used to
decrease the likelihood of larger neighbourhoods being
swapped, later in run time.

Similar problems including telecommunications companies
scheduling employees to meet a variety of tasks have been
tackled in the past, e.g. [12]. These types of tasks have been
described as technician and task scheduling problems (TTSP) in
survey papers [13].

This paper is organized as follows: First, the problem
description is defined in section II, where the key characteristics
of the problem are described, including a definition of each hard

and soft constraint. Section III defines the problem formally
with an Integer Programming (IP) model (for more details see
[14]). Section IV includes the VNS controlled and monitored by
Metropolis-Hastings acceptance, making use of a solution
provided by a greedy algorithm in order to achieve a closer to
optimal solution is also further detailed in this section. The
results of testing are presented in Section V. The final section of
this paper is the conclusion and discussion on possible future
research directions.

II. PROBLEM DESCRIPTION

The engineer rostering problem is typical of large industrial
companies which operate large scale field engineering
workforce to service their customers. The algorithm is based on
scheduling one of many sets of engineers, ranging up to 150
employees per run. This assigns any number of two types of
shifts, day and late, within a specified scheduling period, which
itself has no upper limit in length, but for testing purposes three
months of rostering is generated with the engine.

The problem has the following key characteristics:

1. UK Employment Law must be adhered to, including
maximum working hours allowed per week, number of rest
hours in between shifts, etc.

2. While a solution cannot fail when employees don’t have
two consecutive rest days within a week, it is highly important.
Similarly shift types and less frequent day types (e.g. uncommon
Saturday shifts) must be spread through the roster where
possible. These and other constraints which rate the quality of a
solution are described within the soft constraints.

3. Engineers have largely varied skillsets, both in skills
available as well as each engineer has a skill preference within
which the higher preference skills should be selected before
lower preference skills. Demand may differ largely on a day to
day basis, as well as week to week. Demand is typically based
on demand predictions created historical work patterns. The
objective is to assign as many engineers to shifts where they are
most appropriate for the task as opposed to working a shift only
to meet contractual obligations, i.e. it’s better to meet soft
constraints and hard constraints rather than just hard constraints.

4. We assume that each employee has at least one of each
shift type in the roster.

5. Demand is met in order of priority, which is handled by
processing data as it is input to the engine. Similarly, each
employee has a set of skills, which are ordered into skill
preference. Employees with a higher skill preference for a
specific skill required on a shift must be allocated before
employees with lower skill preference, or undesirable skills.

This paper describes the module known as “RosterGen” in
Fig. 1, with demand and employee data as an input, and the near
optimal roster as an output. The algorithm described in this
paper is the means by which the engine produces a roster. The
other sections are simply user interface, visualization and
database models, however it is useful to see the construction of
the algorithm within this engine.

Fig. 1 A visualized logical overview of the shift scheduling solution.

A. Hard Constraints

HC1: Every employee must have 0 or 1 shift per day.

HC2: Every employee has a maximum number of day types
(Monday - Sunday) in the scheduling period. A possible
maximum is no restriction (-1), none of that day type allowed
(0) or an enforced upper threshold (> 0).

HC3: Every employee has a minimum number of day types
(Monday - Sunday) in the scheduling period. A possible
minimum is no restriction (-1) or an integer which represents the
enforced lower threshold (> 0).

HC4: Every employee has a maximum number of DAY shift
type in the scheduling period. A possible maximum is no
restriction (-1), no DAY shift type allowed (0) or an enforced
upper threshold (> 0).

HC5: Every employee has a minimum number of DAY shift
type in the scheduling period. A possible minimum is no
restriction (-1), or an integer which represents the enforced
lower threshold (> 0).

HC6: Every employee has a maximum number of LATE
shift type in the scheduling period. A possible maximum is no
restriction (-1), no LATE shift type allowed (0) or an enforced
upper threshold (> 0).

HC7: Every employee has a minimum number of LATE
shift type in the scheduling period. A possible minimum is no
restriction (-1), or an integer which represents the enforced
lower threshold (> 0).

HC8: Every employee with the A1 day shift pattern type must
be allocated to A1 shifts every week.

HC9: Every employee with the A2 day shift pattern type must
be allocated to A2 shifts every week.

HC10: Every employee with the A1/A2 day shift pattern type
must be allocated to A1 shifts every second week, and A2 shifts
every other week.

B. Soft Constraints

SC1: Demand requirements of every shift on every day.

SC2: Two consecutive rest days for every employee on every
week.

SC3: Every employee’s least common shift type (DAY or LATE
shift) must be spread as evenly as possible over the scheduling
period to allow a high as possible mean number of days between
the least common shift type allocations.

SC4: Every employee’s less common day types (Monday –
Sunday) must be spread as evenly as possible over the
scheduling period to allow a high as possible mean number of
weeks between the less common day type allocations. Not used
if employee is scheduled for one, less than one, or the maximum
number of day type(s), as ideal intermittency already achieved.

SC5: The number of employees allocated to each day type
(Monday – Sunday) must be spread as evenly as possible over
the scheduling period.

III. AN INTEGER PROGRAMMING MODEL

Following an integer programming model, similar to that

seen elsewhere in the literature [15,16], the following model is

used to demonstrate the problem this paper tackles. Slack and

surplus variables can be introduced to the soft constraints, and

the objectives are to minimize the values of individual

variables. We formulate the entire problem associated with a

variable scheduling period as the following IP model, which

can be altered to adapt to other problems with different

constraints. This approach can be used for any length of

scheduling period.

TABLE I. INTEGER PROGRAMMING MODEL PARAMETERS

Parameters

I Set of employees available

I t | t∈ { 1 , 2 , 3 } Subset of employees that work A1, A2 and A1/A2 shift

patterns respectively. I = I 1 + I 2 + I 3

J Set of days representing days in a week (1-7, i.e.

Monday – Sunday)

W Set of all weeks in the scheduling period. W =

W1+ W2, where W1 represents the weeks with odd

indices and W2 the weeks with even indices

K Set of shift types = {1 (day shift), 2 (late shift)}

Z Set of skills, in order of preference when used in

reference to an employee, in order of demand

priority when used in relation to days or weeks

Dzkjw Demand requirement for a skill z on a shift type k,

on a day j, in a week w

αij The maximum number of day types over the
scheduling period for an employee

βij The maximum number of DAY shift types over the

scheduling period for an employee

γij The maximum number of LATE shift types over the
scheduling period for an employee

ζij The minimum number of day types allowed over the

scheduling period for an employee.

ηij The minimum number of DAY shift types over the
scheduling period for an employee

μij The minimum number of LATE shift types over the

scheduling period for an employee

lik The number of occurrences of shift type k for each
employee i over the scheduling period. li ≤ 5|W|

ki The least common shift type for employee i, ki ∈

K . ki = 1 if li1 < li2, 2 otherwise

R Set of the day index for each occurrence of ki for

employee i over the scheduling period. = {r1, r2,
…}, |R| = lik

oi Ideal intermittence between the i-th employee’s ki,

)/(7int iki j
lWo 

pij Number of shifts worked for employee i on day j.


 


Kk Ww

ijkwij xp , and pij > 1

miki
The number of occurrences of the least common

shift type ki for each employee i on day j. miki < W

qi Ideal day intermittence for employee i,

 
iiki mWq  , }0/{iq

tjw Number of employees allocated per j across W,

WwJjxt
Ii Kk

ijkwjw 
 

, ,

ujw Daily allocated employee spread fitness score per j

across W, ujw ∈ { 0 , 1 }

vj Mean allocated employees per j,

JjWxv
Ii Kk Ww

ijkwj 












 

  

 ,

vj ±  Acceptable upper / lower bounds of tj per j across W.

 ≥ 0,  is an input to the algorithm, which depends

on business preferences at the time

Fig. 2 Integer Programming Model Parameters

Decision variable xijkw is 1 if an employee i is assigned

shift type k for day j in week w, 0 otherwise, for all employees

on day shifts on all weeks on all shifts, defined as:

KkWwJjIiorxijkw  ,,, , 1 0 (1)

Slack / surplus variables are minimized and are used as the

positive or negative deviations from individual goals, defined

as:

WwKkJjZzss zjkwzjkw  ,,, ,0,0 21
 (2)

WwJjIiss ijwijw  ,, ,0,0 43
 (3)

IiRrs tti  , ,05 (4)

Iisi  ,06 (5)

Jjs j  ,07
 (6)

Subject to:

HC1 WwJjIix
Kk

ijkw 


,, ,1 (7)

HC2 JjIix ij

Kk Ww

ijkw 
 

, , (8)

HC3 JjIix ij

Kk Ww

ijkw 
 

, , (9)

HC4 JjIix ij

Ww

wij 


, ,1  (10)

HC5 JjIix
Ww

ijwij 


, ,1  (11)

HC6 JjIix ij

Ww

wij 


, ,2  (12)

HC7 JjIix
Ww

ijwij 


, ,2  (13)

HC8 WwIiAx
Jj Kk

ijkw 
 

, , 11 (14)

HC9 WwIiAx
Jj Kk

ijkw 
 

, , 22 (15)

HC10 131 , , WwIiAx
Jj Kk

ijkw 
 

 (16)

 232 , , WwIiAx
Jj Kk

ijkw 
 

 (17)

SC1 ,21



Ii

zjkwzjkwzjkwijkw dssx

 WwKkJjZz  ,,, (18)

SC2 ,0][43

)1(


 
Kk

ijwijwkwjiijkw ssxx

 WwJjIi  ,, (19)

SC3 IiRrosrr tjtitt  ,,5

1 (20)

SC4 Iiqspww

p

p

iiijpp ijij






 ,/]1)[(

1

6
)(





where p+ϵ is next pij after current pij across W (21)

SC5 JjsWu j

Ww

jw 


 ,1/)(7

 0],,[1  jwjjjwjw uelsevvtifu  (22)

IV. A METROPOLIS-HASTINGS ACCEPTANCE BASED VARIABLE

NEIGHBOURHOOD SEARCH

A. Greedy Algorithm

The first step of this solution is to create a set of

neighbourhoods which satisfy the hard constraints as defined in

Section II. This process is demonstrated in Fig 3. The counter c

represents the current number of shifts still required to meet all

employee’s contractual obligations.

B. Variable Neighbourhood Search

The VNS requires a solution, comprised of neighbourhoods,

as a parameter. A benefit of using the VNS is that, while the

Greedy Algorithm limits the scope of local optima, the VNS

allows some movement around the solution space, providing a

higher chance of reaching the global optimum.

The solution the VNS receives is a set of weeks with

employees allocated throughout. The VNS works in three steps

as follows.

Firstly, by looking at a random day within the solution

which has at least two employees on different shifts (day shift

and late). Then a hard constraint check is run, ensuring that

swapping these two employees is acceptable. If they can safely

be swapped, the algorithm then analyses the current solution in

terms of fitness; how well the soft constraints are met. The swap

occurs, and a second fitness test is run. If the fitness has

worsened, the swap is reverted, otherwise the change stays.

The percentage chance of the next phase occurring is

dependent on Metropolis-Hastings acceptance, which is

described in section C. In this phase, a more disruptive change

occurs: instead of swapping employees on a single day, an

employee is moved shifts from one day to another in the same

week. This is dependent on whether the hard constraints allow

this swap (e.g. if an employee cannot contractually work

Sundays, they will never be given a Sunday). Similarly to

before, this change will occur, but only if fitness improves will

the change remain as part of the solution.

The final phase of the VNS is the least likely to occur as it

is the most destructive, and is also controlled by Metropolis-

Hastings acceptance, preventing this from occurring as

frequently towards the end of runtime. In this phase a single

employee has a week of allocations removed. The employee is

then given a new set of shifts which meet Hard Constraints, and

to an extent Soft Constraints. Regardless of improvement of

fitness or not, this change remains. This is intentional, in order

to leave the current neighbourhood and potentially reach higher

fitness levels.

C. Metropolis-Hastings acceptance

In this instance the solution utilizes the probabilistic

acceptance criterion of Metropolis-Hastings acceptance,

similar to exponential Monte-Carlo or Metropolis-Hastings

acceptance [17], and embedding it within the VNS.

Unlike in more traditional methods, in this approach

Metropolis-Hastings acceptance is used to attempt to find a

global maximum. Specifically, this method of controlling the

frequency of an event occurring over time is used to reduce the

likelihood of disruption the closer the algorithm is to ending.

The VNS should produce a better solution as time moves

forward, but if the VNS is not controlled by Metropolis-

Hastings acceptance there is increased chance of losing a more

highly rated fitness solution.

GreedyAlgorithm(Employees e in E, Demand d){
 Define a set of Weeks w in W;

Define shifts k in K;
Define skills s in S;
Define c;
Loop while c > 0{

Get random k from W;
If d not met on k{

Find highest priority d
in k;
Find available e with
highest skill preference
k for d;

 Allocate e to k;
 c--;
 }
 }
}

Fig. 3 Pseudo-code of the Greedy Algorithm

The only parameter used during Metropolis-Hastings

acceptance is based on length of runtime. The goal of the

Metropolis-Hastings acceptance is to reduce the likelihood of

unnecessarily altering a good solution later in runtime, as such

the chance of a drastic change at the beginning is 10%, and this

reduces by 50% of the current likelihood every 10% of runtime

(i.e. 10% at start, then 5%, then 2.5%, etc.) This means it’s still

possible a change will happen later in runtime but becomes

much less likely, thus increasing likelihood of a good solution.

V. RESULTS

Whether a solution can be accepted as feasible or infeasible

is determined by the hard constraints being achieved, which

ensure that legal and contractual requirements are met. The

quality of the feasible solutions is measured by how well the

soft constraints are met. Solutions produced by this algorithm

always meet hard constraints, and meet soft constraints to some

extent. For this paper, we assume the soft constraints are of

equal priority, however it should be noted that these can be

modified before run time so certain soft constraints take a

higher precedence and the final fitness results are weighted as

such.

Fitness results are obtained from fitness functions, which

each return a value pertaining to the soft constraint they

represent. The fitness results are then averaged to return an

overall fitness value for the current solution.

The results in this section were tested on an oracle enterprise

Linux 6 OS server with a 12 core Xeon CPU for 1 hour.

The tests used real employee data and real demand forecast

data, however it should be stated that the number of shift types

the employees work was increased as the data provided was for

an area where engineers worked a very small number of late

shifts per quarter. There were 50 tests conducted, and the results

are shown in Fig 4. These results show the mean fitness of the

solution after being processed by the greedy algorithm

compared to running variable neighbourhood search processes

for one hour. These values are calculated by taking the mean of

all fitness values carried out from the soft constraints (see

section III). In practice the soft constraints can be weighted so

the engine can be used to produce solutions which cater to

specific intrigues, for example increasing the weighting of the

demand soft constraint being met, or employees longer rest

break periods.

The mean of all greedy algorithm results below is

0.681309278934374 and the mean of all VNS results is

0.784683675825638, which indicates that over fifty tests

running at 1 hour each, there is an average of 10.3% increase in

fitness using the VNS algorithm after the greedy algorithm sets

up an initial solution.

Metropolis-Hastings acceptance is the technique we used in

order to prevent a closer to optimal solution from being

disrupted later in the runtime. The runtime parameters are e =

100% chance of acceptance at the beginning, with an e * 0.99

reduced chance of disruption per iteration. The results of each

run are as expected. While the greedy algorithm can find a

suitable solution, the VNS improves upon each solution by

iteratively meeting more soft constraints.

The coefficient of determination (R2) is shown in Fig 6. This

statistic gives useful information about the goodness of fit. An

R2 value of 1 would indicate the regression line perfectly fits

the model. In this instance the R2 value is calculated at 0.83,

this is a good indicator of positive correlation between the

results of the VNS algorithm and the Greedy Algorithm.

Fig. 4

A question of efficiency can be raised at this point: after

using a server with comparatively substantial resources for 1

hour per test, what is the most efficient time to leave this

process running for? This is a point for future research.

VI. CONCLUSIONS

This case study and paper solves a highly-constrained real

world workforce scheduling problem for engineers at FSO. The

solution utilises Greedy Algorithm, Metropolis-Hastings

acceptance and variable neighbourhood search to obtain results

which would not be obtained using either of these algorithms

individually. The greedy algorithm creates an initial solution

which is used as a set of neighbourhoods by the VNS to find a

closer to optimal solution. The VNS swaps shifts between

employees on a single day, or by moving an employee’s

scheduled shift time from one day to another in the same week,

in order to obtain a closer to optimal solution. The greedy

algorithm solves the hard constraints, and some soft constraints,

but the VNS increases the search space in order to find solutions

which improve the number of soft constraints met and improve

fitness test results.

Future work will extend the Greedy Algorithm with extra

functionality which will provide a starting set of shift patterns

which already meet some hard constraints. This head-start

should improve the time it takes for the algorithm to run, as well

as potentially improving fitness results since closer to optimal

patterns can be preset with this method. There is also the option

of furthering analysis on which days least meet fitness criteria,

and attempting to focus on those days in particular – this may

improve fitness more quickly by solving problem areas. The

steps to be taken next however will be to create an optimizer

which would treat this algorithm as a ‘black box’, and

modifying the input parameters and data in order to look at

different and potential scenarios, for example the ability to view

the fitness values of solutions created with an increased number

of employees, or an increased number of employee skills,

R² = 0.8309

0.7

0.75

0.8

0.85

0.9

0.6 0.65 0.7 0.75 0.8

Mean VNS Fitness Scatter Plot

allowing some insight into potential business growth for

example. Information such as this could be useful to both

employees and businesses who wish to further optimize their

skilled workforce.

ACKNOWLEDGMENT

The authors of this paper extend gratitude to those involved and

the following funders: British Telecommunications Plc and the

UK’s EPSRC DAASE project (grant no. EP/J017515/1). We

would also like to give our thanks to Paul McMenemy for his

assistance with formulating the constraints and his hours of

time explaining IP models. Finally we would like to

acknowledge Brian Lee for his explanation on analysing non-

skewed data.

REFERENCES

[1] E.K. Burke, and K. Graham, Search Methodologies. Springer Science+
Business Media, Incorporated, 2005.

[2] J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester, and L.
De Boeck, “Personnel scheduling: a literature review,” European Journal
of Operational Research, vol. 226, pp. 367-385, 2013.

[3] B. Cheang, H. Li, A. Lim, and B. Rodrigues, “Nurse rostering problems
– a bibliographic survey,” European Journal of Operational Research, vol.
151, pp. 447-460, 2003.

[4] J. Li, and U. Aickelin, “BOA for nurse scheduling,” in Scalable
Optimization via Probabilistic Modeling: From Algorithms to
Applications, Chapter 17, M. Pelican, K. Sastry and E. Cantú-Paz, Eds.
Springer, 2006, pp. 315-332.

[5] J. Li, E.K. Burke, T. Curtois, S. Petrovic, and R. Qu, “The falling tide
algorithm: a new multi-objective approach for complex workforce
scheduling,” OMEGA – The International Journal of Management
Science, vol. 40, pp. 283-293, 2012.

[6] D. Konur,, and M.G. Mihalis, "Cost-stable truck scheduling at a cross-
dock facility with unknown truck arrivals: A meta-heuristic approach,"
Transportation Research Part E: Logistics and Transportation Review,
vol. 49, pp. 71-91, 2013.

[7] E.K. Burke, and P. Sanja, "Recent research directions in automated
timetabling," European Journal of Operational Research, vol. 140, pp.
266-280, 2002.

[8] J. Li, R. Bai, Y. Shen, and R. Qu, “Search with evolutionary ruin and
stochastic rebuild: a theoretic framework and a case study on exam
timetabling," European Journal of Operational Research, vol. 242, pp.
798-806, 2015.

[9] M.A. Awadallah, A.L. Bolaji, and M.A. Al-Betar, "A hybrid artificial bee
colony for a nurse rostering problem," Applied Soft Computing, vol. 35,
pp. 726-739, 2015.

[10] M.J. Brusco, and L.W. Jacobs, “A simulated annealing approach to the
cyclic staff-scheduling problem,” Naval Research Logistics, vol. 40, pp.
69-84, 1993.

[11] P. Hansen, and N. Mladenović, "Variable neighborhood search," Search
methodologies. Springer US, pp. 313-337, 2014.

[12] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy
studies on magneto-optical media and plastic substrate interface,” IEEE
Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th
Annual Conf. Magnetics Japan, p. 301, 1982].

[13] P David, and S Ropke, "Large neighborhood search," Handbook of
Metaheuristics. Springer US, pp. 399-419, 2010.

[14] E.K. Burke, G. Kendall, Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques. Springer, 2014.

[15] E.K. Burke, T. Curtis, G. Post, R. Qu, qnd B. Veltman, “A hybrid heuristic
ordering and variable neighbourhood search for the nurse rostering
problem,” European Journal of Operational Research, vol. 188, pp. 330-
341, 2008.

[16] E.K. Burke, J. Li, and R. Qu, “A Hybrid model of integer programming
and variable neighbourhood search for highly-constrained rostering
problems,” European Journal of Operational Research, vol. 203, pp. 484-
493, 2010.

[17] C. Siddhartha, and E Greenberg, “Understanding the metropolis-hastings
algorithm,” The American Statistician, vol. 49, pp. 327-335, 1995.

