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Abstract— This paper describes a Variable Neighbourhood 

Search (VNS) combined with Metropolis-Hastings acceptance to 

tackle a highly constrained workforce scheduling problem   typical 

of field service operations (FSO) companies.  A refined greedy 

algorithm is firstly designed to create an initial solution which 

meets all hard constraints and satisfies some of the soft constraints. 

The VNS is then used to swap out less promising combinations, 

continually moving towards a optimal solution until meeting 

finishing requirements, which are either a satisfactory mean 

fitness set as a parameter, or a time allowance of one hour. The 

results of this approach are promising when compared to the 

stand-alone greedy algorithm.  

Keywords—Variable Neighbourhood Search, Personnel 

Scheduling, Engineer Rostering, Metaheuristic 

I. INTRODUCTION  

When there are tens or hundreds of employees, with 
hundreds or thousands of shifts requiring employee allocations, 
an exponential number of possible solutions emerge. In order to 
decide which of the numerous potential and acceptable solutions 
are closer to optimal; definitions of preferable solution attributes 
are required. These criteria are known as Hard Constraints 
(HCs) and Soft Constraints (SCs) [1]. HCs are often simpler 
requirements which in this case are Boolean in nature; where a 
fail will cause the solution to become unusable due to 
contractual obligations, legal obligations or other highly 
important constraints. In the case of employee scheduling, an 
example would be breaking employment laws such as the legal 
number of hours an employee can work per week. SCs are the 
measurements of multiple criteria which describe a usable 
solution and its attributes on a percentage scale of potential 
fitness. An example of a SC in this problem is aiming to satisfy 
the workforce by ensuring as many employees have consecutive 
rest days per week as is possible, as opposed to rest days with 
working day in between them. While there are solutions which 
exist to deal with subsets of the constraints presented, this case 
study provides a solution to the unique problems large number 
of specific constraints. 

Personnel scheduling problems have been widely studied in 
recent decades, and there have been calls for further research 
into multiple decision variables that are integrated into the 
solution engine [2]. Demand forecasting being one such 
suggested topic for further study, which we have implemented 

in this case study. Multiple fields have benefited from the use of 
metaheuristics to solve large complex rostering scheduling 
problems, including nurse rostering [3,4,5], truck scheduling [6] 
and exam timetabling [7,8]. It goes to follow that a similarly 
highly constrained search optimization problem in engineer 
rostering can benefit from similar techniques. 

There have been multiple solutions provided to similar 
problems, using techniques such as tabu search [9], simulated 
annealing [10], as well as different applications of variable 
neighbourhood search [11]. These examples of metaheuristics 
have a proven track record with less constrained and smaller 
search spaces but the use of a greedy algorithm to create an 
initial solution space which is further optimized by Variable 
Neighbourhood Search (VNS), yet monitored with Metropolis-
Hastings acceptance shows promise with the highly constrained 
search space unique to this problem.  

A further advantage of this approach is the combination of 
benefits from both algorithms: A greedy algorithm creating the 
initial solution set is limited by the inability to move around the 
solution space to a closer to optimal result, often because of a 
requirement to cross an infeasible area.  The further use of VNS 
allows a broader search, furthering the potential solution space 
by use of three techniques: Swapping shifts between two 
separate employees on an individual day (e.g. employee A’s day 
shift and employee B’s night shift); moving an employee to 
work a separate day entirely (e.g. moving Employee A from a 
Monday shift to a Saturday shift). Finally, Metropolis-Hastings 
acceptance is used to decrease the likelihood of the more 
disruptive approach of swapping of days being used as opposed 
to swapping shifts, which is less disruptive. This is important to 
prevent the accidental corruption of a good solution into a 
worsened one. Metropolis-Hastings acceptance is used to 
decrease the likelihood of larger neighbourhoods being 
swapped, later in run time.  

Similar problems including telecommunications companies 
scheduling employees to meet a variety of tasks have been 
tackled in the past, e.g. [12]. These types of tasks have been 
described as technician and task scheduling problems (TTSP) in 
survey papers [13]. 

This paper is organized as follows: First, the problem 
description is defined in section II, where the key characteristics 
of the problem are described, including a definition of each hard 



and soft constraint. Section III defines the problem formally 
with an Integer Programming (IP) model (for more details see 
[14]). Section IV includes the VNS controlled and monitored by 
Metropolis-Hastings acceptance, making use of a solution 
provided by a greedy algorithm in order to achieve a closer to 
optimal solution is also further detailed in this section. The 
results of testing are presented in Section V. The final section of 
this paper is the conclusion and discussion on possible future 
research directions. 

II. PROBLEM DESCRIPTION  

The engineer rostering problem is typical of large industrial 
companies which operate large scale field engineering 
workforce to service their  customers. The algorithm is based on 
scheduling one of many sets of engineers, ranging up to 150 
employees per run. This assigns any number of two types of 
shifts, day and late, within a specified scheduling period, which 
itself has no upper limit in length, but for testing purposes three 
months of rostering is generated with the engine. 

The problem has the following key characteristics: 

1. UK Employment Law must be adhered to, including 
maximum working hours allowed per week, number of rest 
hours in between shifts, etc.  

2. While a solution cannot fail when employees don’t have 
two consecutive rest days within a week, it is highly important. 
Similarly shift types and less frequent day types (e.g. uncommon 
Saturday shifts) must be spread through the roster where 
possible. These and other constraints which rate the quality of a 
solution are described within the soft constraints. 

3. Engineers have largely varied skillsets, both in skills 
available as well as each engineer has a skill preference within 
which the higher preference skills should be selected before 
lower preference skills. Demand may differ largely on a day to 
day basis, as well as week to week. Demand is typically based 
on demand predictions created historical work patterns. The 
objective is to assign as many engineers to shifts where they are 
most appropriate for the task as opposed to working a shift only 
to meet contractual obligations, i.e. it’s better to meet soft 
constraints and hard constraints rather than just hard constraints. 

4. We assume that each employee has at least one of each 
shift type in the roster.  

5. Demand is met in order of priority, which is handled by 
processing data as it is input to the engine. Similarly, each 
employee has a set of skills, which are ordered into skill 
preference. Employees with a higher skill preference for a 
specific skill required on a shift must be allocated before 
employees with lower skill preference, or undesirable skills. 

This paper describes the module known as “RosterGen” in 
Fig. 1, with demand and employee data as an input, and the near 
optimal roster as an output. The algorithm described in this 
paper is the means by which the engine produces a roster. The 
other sections are simply user interface, visualization and 
database models, however it is useful to see the construction of 
the algorithm within this engine.  

 

 

Fig. 1 A visualized logical overview of the shift scheduling solution. 

A. Hard Constraints 

HC1: Every employee must have 0 or 1 shift per day. 

HC2: Every employee has a maximum number of day types 
(Monday - Sunday) in the scheduling period. A possible 
maximum is no restriction (-1), none of that day type allowed 
(0) or an enforced upper threshold (> 0). 

HC3: Every employee has a minimum number of day types 
(Monday - Sunday) in the scheduling period. A possible 
minimum is no restriction (-1) or an integer which represents the 
enforced lower threshold (> 0). 

HC4: Every employee has a maximum number of DAY shift 
type in the scheduling period. A possible maximum is no 
restriction (-1), no DAY shift type allowed (0) or an enforced 
upper threshold (> 0). 

HC5: Every employee has a minimum number of DAY shift 
type in the scheduling period. A possible minimum is no 
restriction (-1), or an integer which represents the enforced 
lower threshold (> 0). 

HC6: Every employee has a maximum number of LATE 
shift type in the scheduling period. A possible maximum is no 
restriction (-1), no LATE shift type allowed (0) or an enforced 
upper threshold (> 0). 

HC7: Every employee has a minimum number of LATE 
shift type in the scheduling period. A possible minimum is no 
restriction (-1), or an integer which represents the enforced 
lower threshold (> 0). 

HC8: Every employee with the A1 day shift pattern type must 
be allocated to A1 shifts every week. 

HC9: Every employee with the A2 day shift pattern type must 
be allocated to A2 shifts every week. 

HC10: Every employee with the A1/A2 day shift pattern type 
must be allocated to A1 shifts every second week, and A2 shifts 
every other week. 

B. Soft Constraints 

SC1: Demand requirements of every shift on every day.  



SC2: Two consecutive rest days for every employee on every 
week. 

SC3: Every employee’s least common shift type (DAY or LATE 
shift) must be spread as evenly as possible over the scheduling 
period to allow a high as possible mean number of days between 
the least common shift type allocations. 

SC4: Every employee’s less common day types (Monday – 
Sunday) must be spread as evenly as possible over the 
scheduling period to allow a high as possible mean number of 
weeks between the less common day type allocations. Not used 
if employee is scheduled for one, less than one, or the maximum 
number of day type(s), as ideal intermittency already achieved. 

SC5: The number of employees allocated to each day type 
(Monday – Sunday) must be spread as evenly as possible over 
the scheduling period. 

III. AN INTEGER PROGRAMMING MODEL 

Following an integer programming model, similar to that 

seen elsewhere in the literature [15,16], the following model is 

used to demonstrate the problem this paper tackles. Slack and 

surplus variables can be introduced to the soft constraints, and 

the objectives are to minimize the values of individual 

variables. We formulate the entire problem associated with a 

variable scheduling period as the following IP model, which 

can be altered to adapt to other problems with different 

constraints. This approach can be used for any length of 

scheduling period. 

TABLE I.  INTEGER PROGRAMMING MODEL PARAMETERS 

Parameters 

I Set of employees available 

I t | t∈ { 1 , 2 , 3 }  Subset of employees that work A1, A2 and A1/A2 shift 

patterns respectively.  I = I 1 + I 2 + I 3  

J Set of days representing days in a week (1-7, i.e. 

Monday – Sunday) 

W  Set of all weeks in the scheduling period. W =  

W1+ W2, where W1 represents the weeks with odd 

indices and W2 the weeks with even indices 

K Set of shift types = {1 (day shift), 2 (late shift)} 

Z  Set of skills, in order of preference when used in 

reference to an employee, in order of demand 

priority when used in relation to days or weeks 

Dzkjw Demand requirement for a skill z on a shift type k, 

on a day j, in a week w 

αij The maximum number of day types over the 
scheduling period for an employee 

βij The maximum number of DAY shift types over the 

scheduling period for an employee 

γij The maximum number of LATE shift types over the 
scheduling period for an employee 

ζij The minimum number of day types allowed over the 

scheduling period for an employee. 

ηij The minimum number of DAY shift types over the 
scheduling period for an employee 

μij The minimum number of LATE shift types over the 

scheduling period for an employee 

lik The number of occurrences of shift type k for each 
employee i over the scheduling period. li ≤ 5|W| 

ki The least common shift type for employee i, ki ∈  

K .  ki =  1  if li1 < li2, 2 otherwise 

R Set of the day index for each occurrence of ki for 

employee i over the scheduling period.  = {r1, r2, 
…}, |R| = lik 

oi Ideal intermittence between the i-th employee’s ki, 

)/(7int iki j
lWo   

pij Number of shifts worked for employee i on day j. 


 


Kk Ww

ijkwij xp , and pij > 1  

miki  
The number of occurrences of the least common 

shift type ki for each employee i on day j. miki < W  

qi Ideal day intermittence for employee i, 

 
iiki mWq  , }0/{iq  

tjw Number of employees allocated per j across W, 

WwJjxt
Ii Kk

ijkwjw 
 

,  ,  

ujw Daily allocated employee spread fitness score per j 

across W, ujw ∈  { 0 , 1 }  

vj Mean allocated employees per j,  

JjWxv
Ii Kk Ww

ijkwj 












 

  

  ,  

vj ±  Acceptable upper / lower bounds of tj per j across W. 

 ≥ 0,  is an input to the algorithm, which depends 

on business preferences at the time 

 
Fig. 2 Integer Programming Model Parameters 

 

Decision variable xijkw is 1 if an employee i is assigned 

shift type k for day j in week w, 0 otherwise, for all employees 

on day shifts on all weeks on all shifts, defined as: 

KkWwJjIiorxijkw  ,,,  , 1  0  (1) 

 

Slack / surplus variables are minimized and are used as the 

positive or negative deviations from individual goals, defined 

as: 

WwKkJjZzss zjkwzjkw  ,,, ,0,0 21
 (2) 

WwJjIiss ijwijw  ,, ,0,0 43
  (3) 

IiRrs tti  ,  ,05   (4) 

Iisi    ,06  (5)

Jjs j    ,07
  (6) 

 

Subject to: 

HC1 WwJjIix
Kk

ijkw 


,,  ,1  (7) 

HC2 JjIix ij

Kk Ww

ijkw 
 

,  ,   (8) 

HC3 JjIix ij

Kk Ww

ijkw 
 

,  ,  (9) 

HC4 JjIix ij

Ww

wij 


,  ,1    (10) 

HC5 JjIix
Ww

ijwij 


,  ,1    (11) 

HC6 JjIix ij

Ww

wij 


,  ,2    (12) 



HC7 JjIix
Ww

ijwij 


,  ,2    (13) 

HC8 WwIiAx
Jj Kk

ijkw 
 

,  , 11   (14) 

HC9 WwIiAx
Jj Kk

ijkw 
 

,  , 22  (15) 

HC10 131 ,  , WwIiAx
Jj Kk

ijkw 
 

  (16) 

          232 ,  , WwIiAx
Jj Kk

ijkw 
 

  (17) 

 

SC1 ,21



Ii

zjkwzjkwzjkwijkw dssx   

        WwKkJjZz  ,,,   (18) 

SC2 ,0][ 43

)1(


 
Kk

ijwijwkwjiijkw ssxx   

        WwJjIi  ,,   (19) 

SC3 IiRrosrr tjtitt  ,,5

1   (20) 

SC4 Iiqspww

p

p

iiijpp ijij






   ,/]1)[(

1

6
)(



  

where p+ϵ is next pij after current pij across W  (21) 

SC5 JjsWu j

Ww

jw 


  ,1/)( 7
 

        0  ],,[  1  jwjjjwjw uelsevvtifu    (22) 

 

IV. A METROPOLIS-HASTINGS ACCEPTANCE BASED VARIABLE 

NEIGHBOURHOOD SEARCH 

A. Greedy Algorithm 

The first step of this solution is to create a set of 

neighbourhoods which satisfy the hard constraints as defined in 

Section II. This process is demonstrated in Fig 3. The counter c 

represents the current number of shifts still required to meet all 

employee’s contractual obligations. 

 

B. Variable Neighbourhood Search  

The VNS requires a solution, comprised of neighbourhoods, 

as a parameter. A benefit of using the VNS is that, while the 

Greedy Algorithm limits the scope of local optima, the VNS 

allows some movement around the solution space, providing a 

higher chance of reaching the global optimum.  

The solution the VNS receives is a set of weeks with 

employees allocated throughout. The VNS works in three steps 

as follows. 

Firstly, by looking at a random day within the solution 

which has at least two employees on different shifts (day shift 

and late). Then a hard constraint check is run, ensuring that 

swapping these two employees is acceptable. If they can safely 

be swapped, the algorithm then analyses the current solution in 

terms of fitness; how well the soft constraints are met. The swap 

occurs, and a second fitness test is run. If the fitness has 

worsened, the swap is reverted, otherwise the change stays. 

The percentage chance of the next phase occurring is 

dependent on Metropolis-Hastings acceptance, which is 

described in section C. In this phase, a more disruptive change 

occurs: instead of swapping employees on a single day, an 

employee is moved shifts from one day to another in the same 

week. This is dependent on whether the hard constraints allow 

this swap (e.g. if an employee cannot contractually work 

Sundays, they will never be given a Sunday). Similarly to 

before, this change will occur, but only if fitness improves will 

the change remain as part of the solution. 

The final phase of the VNS is the least likely to occur as it 

is the most destructive, and is also controlled by Metropolis-

Hastings acceptance, preventing this from occurring as 

frequently towards the end of runtime. In this phase a single 

employee has a week of allocations removed. The employee is 

then given a new set of shifts which meet Hard Constraints, and 

to an extent Soft Constraints. Regardless of improvement of 

fitness or not, this change remains. This is intentional, in order 

to leave the current neighbourhood and potentially reach higher 

fitness levels. 

C. Metropolis-Hastings acceptance 

In this instance the solution utilizes the probabilistic 

acceptance criterion of Metropolis-Hastings acceptance, 

similar to exponential Monte-Carlo or Metropolis-Hastings 

acceptance [17], and embedding it within the VNS. 

Unlike in more traditional methods, in this approach 

Metropolis-Hastings acceptance is used to attempt to find a 

global maximum. Specifically, this method of controlling the 

frequency of an event occurring over time is used to reduce the 

likelihood of disruption the closer the algorithm is to ending. 

The VNS should produce a better solution as time moves 

forward, but if the VNS is not controlled by Metropolis-

Hastings acceptance there is increased chance of losing a more 

highly rated fitness solution.  

GreedyAlgorithm(Employees e in E, Demand d){ 
 Define a set of Weeks w in W; 

Define shifts k in K; 
Define skills s in S; 
Define c; 
Loop while c > 0{ 

Get random k from W; 
If d not met on k{ 

Find highest priority d 
in k; 
Find available e with 
highest skill preference 
k for d; 

   Allocate e to k; 
   c--; 
  } 
 } 
} 

Fig. 3 Pseudo-code of the Greedy Algorithm 



The only parameter used during Metropolis-Hastings 

acceptance is based on length of runtime. The goal of the 

Metropolis-Hastings acceptance is to reduce the likelihood of 

unnecessarily altering a good solution later in runtime, as such 

the chance of a drastic change at the beginning is 10%, and this 

reduces by 50% of the current likelihood every 10% of runtime 

(i.e. 10% at start, then 5%, then 2.5%, etc.) This means it’s still 

possible a change will happen later in runtime but becomes 

much less likely, thus increasing likelihood of a good solution. 

V. RESULTS 

Whether a solution can be accepted as feasible or infeasible 

is determined by the hard constraints being achieved, which 

ensure that legal and contractual requirements are met. The 

quality of the feasible solutions is measured by how well the 

soft constraints are met. Solutions produced by this algorithm 

always meet hard constraints, and meet soft constraints to some 

extent. For this paper, we assume the soft constraints are of 

equal priority, however it should be noted that these can be 

modified before run time so certain soft constraints take a 

higher precedence and the final fitness results are weighted as 

such.  

Fitness results are obtained from fitness functions, which 

each return a value pertaining to the soft constraint they 

represent. The fitness results are then averaged to return an 

overall fitness value for the current solution. 

The results in this section were tested on an oracle enterprise 

Linux 6 OS server with a 12 core Xeon CPU for 1 hour.  

The tests used real employee data and real demand forecast 

data, however it should be stated that the number of shift types 

the employees work was increased as the data provided was for 

an area where engineers worked a very small number of late 

shifts per quarter. There were 50 tests conducted, and the results 

are shown in Fig 4. These results show the mean fitness of the 

solution after being processed by the greedy algorithm 

compared to running variable neighbourhood search processes 

for one hour. These values are calculated by taking the mean of 

all fitness values carried out from the soft constraints (see 

section III). In practice the soft constraints can be weighted so 

the engine can be used to produce solutions which cater to 

specific intrigues, for example increasing the weighting of the 

demand soft constraint being met, or employees longer rest 

break periods. 

The mean of all greedy algorithm results below is 

0.681309278934374 and the mean of all VNS results is 

0.784683675825638, which indicates that over fifty tests 

running at 1 hour each, there is an average of 10.3% increase in 

fitness using the VNS algorithm after the greedy algorithm sets 

up an initial solution. 

Metropolis-Hastings acceptance is the technique we used in 

order to prevent a closer to optimal solution from being 

disrupted later in the runtime. The runtime parameters are e = 

100% chance of acceptance at the beginning, with an e * 0.99 

reduced chance of disruption per iteration. The results of each 

run are as expected. While the greedy algorithm can find a 

suitable solution, the VNS improves upon each solution by 

iteratively meeting more soft constraints. 

The coefficient of determination (R2) is shown in Fig 6. This 

statistic gives useful information about the goodness of fit. An 

R2 value of 1 would indicate the regression line perfectly fits 

the model. In this instance the R2 value is calculated at 0.83, 

this is a good indicator of positive correlation between the 

results of the VNS algorithm and the Greedy Algorithm. 

 
Fig. 4 

 

A question of efficiency can be raised at this point: after 

using a server with comparatively substantial resources for 1 

hour per test, what is the most efficient time to leave this 

process running for? This is a point for future research. 

VI. CONCLUSIONS 

This case study and paper solves a highly-constrained real 

world workforce scheduling problem for engineers at FSO. The 

solution utilises Greedy Algorithm, Metropolis-Hastings 

acceptance and variable neighbourhood search to obtain results 

which would not be obtained using either of these algorithms 

individually. The greedy algorithm creates an initial solution 

which is used as a set of neighbourhoods by the VNS to find a 

closer to optimal solution. The VNS swaps shifts between 

employees on a single day, or by moving an employee’s 

scheduled shift time from one day to another in the same week, 

in order to obtain a closer to optimal solution. The greedy 

algorithm solves the hard constraints, and some soft constraints, 

but the VNS increases the search space in order to find solutions 

which improve the number of soft constraints met and improve 

fitness test results.  

Future work will extend the Greedy Algorithm with extra 

functionality which will provide a starting set of shift patterns 

which already meet some hard constraints. This head-start 

should improve the time it takes for the algorithm to run, as well 

as potentially improving fitness results since closer to optimal 

patterns can be preset with this method. There is also the option 

of furthering analysis on which days least meet fitness criteria, 

and attempting to focus on those days in particular – this may 

improve fitness more quickly by solving problem areas. The 

steps to be taken next however will be to create an optimizer 

which would treat this algorithm as a ‘black box’, and 

modifying the input parameters and data in order to look at 

different and potential scenarios, for example the ability to view 

the fitness values of solutions created with an increased number 

of employees, or an increased number of employee skills, 
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allowing some insight into potential business growth for 

example. Information such as this could be useful to both 

employees and businesses who wish to further optimize their 

skilled workforce. 
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