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SMART DATA SAMPLING AND DATA 
RECONSTRUCTION 

FIELD OF THE INVENTION 

The invention relates to the field of collection, processing, 
characterising, modelling and/or reconstruction of data. 
More particularly, the invention relates to a method and 
apparatus for Sampling, processing, characterising, repre 
senting, modelling and/or reconstructing data obtainable in 
a sample space, such as univariate signals, for example time 
series of measurements, spatial signals, for example images, 
or multivariate signals. 

BACKGROUND OF THE INVENTION 

In many fields today, analog and digital signals are 
sampled at spaced time intervals to form digital represen 
tations for storage, analysis, processing, transmission, repro 
duction, and other uses. These signals may include, but are 
not limited to, Sounds, images, time-varying measurement 
values, sensor data such as bioelectrical data like electro 
encephalography data (EEG), electrocardiography data 
(ECG), electromyography data (EMG), electrollaryngraphy 
data (ELG), electro-oculography data (EOG), control sys 
tem signals that control other devices or systems, and 
telecommunication transmission signals. The signal mea 
surements are often intended to depict the state of an object 
for measurement, which may be a patient’s brain as in an 
EEG, or a picture of the earth as in a seismic survey. 
Therefore, in each case, it is desirable to obtain an accept 
able-quality reconstruction of the signal. The term “accept 
able-quality reconstruction' herein refers to a reconstruction 
with a level of precision sufficient to depict the state of the 
object faithfully for the selected application. 

Today, many fields have their own accepted practice for 
the number of measurements, commonly expressed as a 
'sampling rate', required to obtain an acceptable-quality 
reconstruction. Many of them are restricted by the Nyquist 
Shannon theorem, which states that in order to reconstruct a 
signal without aliasing artifacts, the signal must be sampled 
at above twice the bandwidth or the highest frequency 
component of the signal in the case of baseband sampling, 
which sampling rate is commonly referred to as the “Nyquist 
rate.” To reduce the sampling rate below the current practice 
or below the Nyquist rate while still obtaining an acceptable 
quality reconstruction would have many benefits such as 
reduced costs and measurement time. 

Throughout computational Science and engineering, sev 
eral methods are known to represent data in Such a parsi 
monious way. To reduce the sampling rate below the Nyquist 
rate, mathematical models are proposed in which the major 
features of the data are represented using an expression with 
only a few terms, in other words, models that use a “sparse' 
combination of generating elements taken from a set. A 
representation is called t-sparse if it is a combination of only 
t elements. Such mathematical models make use of the 
sparse nature of the data of interest. The terms sparse (and 
“sparsity') here mean any data that have a small number of 
dominating terms in the model or representation compared 
to the number of all the terms. These mathematical models 
consist of a sparse combination of terms taken from a 
plurality of functions in the expression. When the plurality 
of functions forms a basis, the sparse combination becomes 
unique. By allowing a larger set of functions, different sparse 
combinations may represent the data, e.g. a plurality of 
different combinations may provide equivalent representa 
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2 
tions of the data. Often, modelling problems deal with a 
mixture of diverse phenomena, and therefore a plurality of 
sparse combinations of terms from different sources or bases 
may be useful. In addition, nonlinear models are possible 
that consist of a quotient of sparse linear combinations. 

Besides the accuracy of a representation, a models spar 
sity has really become a priority. The degree of sparsity 
affects the achievable level of compression, whether in 
sampling or in reconstruction. A sparser model means a 
higher degree of compression of the data, less collection of 
the data, as well as reduced storage needs or transmission of 
the data and a reduced complexity of the mathematical 
model for analysing Such data. It may be assumed herein 
after that the given data behave more or less in accordance 
with a sparse combination of elements taken from a specific 
set. The aim is then to determine both the support of the 
sparse combination and the Scalar coefficients in the repre 
sentation, from a small or minimal amount of data samples. 
It makes no sense to collect vast amounts of data merely to 
compress these afterwards. Ideally the required data samples 
may not depend on the specific object that one is dealing 
with and contain enough information to reconstruct it. 
Sparse techniques may therefore solve the problem state 
ment from a number of samples proportional to the number 
of terms in the representation rather than the number of 
available data points or available generating elements for the 
model. 

Prior art methods utilizing the sparse characteristic to 
reduce the measurement rates include compressed sensing, 
see for example U.S. Pat. No. 7,646,924, and finite rate of 
innovation, see for example U.S. Patent Application No. US 
2010/0246729. Each approach has its advantages and limi 
tations. One method may be more suitable in one application 
while another method is more Suitable in another applica 
tion. Thus, it would be highly desirable to have multiple 
methods that can give an acceptable-quality reconstruction 
of the signal from a reduced number of measurements 
compared to the current practice. 

In compressed sensing, down-sampling is performed ran 
domly, hence introducing a probabilistic element which may 
cause the reconstruction to fail. The gain in samples offered 
by the technique also comes at a price: the complexity of the 
optimization algorithms used to recover an approximation to 
the original signal is higher than the traditional FFT-based 
algorithms using Nyquist-rate based sampling. In the finite 
rate of innovation technique the sampling does not take 
place in the time or spatial domain. Also, the sampling is 
aimed at picking up the pulses in the signal and so noise 
significantly influences the result. 

In coding theory however, the reconstruction of a t-sparse 
object in a higher dimensional space may theoretically be 
achieved using only 2t samples, which is the absolute 
minimum. With one more sample it is even possible to 
reveal the correct value of t. But it is widely believed, that 
a similar result does not hold in a noisy numeric environ 
ment, among other things because the decoding algorithm 
finds the Support of the sparse representation by rooting a 
polynomial, which may be an extremely ill-conditioned 
problem. 

While the present disclosure uses signal processing as the 
example for illustrating the invention, one skilled in the art 
will understand that the invention is not limited to the field 
of signal processing but to the collection, processing, and 
reconstruction of all data that demonstrate sparsity. 

SUMMARY OF THE INVENTION 

It is an object of embodiments of the present invention to 
provide good and efficient methods and means for repre 
senting data, e.g. for the sparse representation of data. 
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It is an advantage of at least some embodiments of the 
present invention that a sparse representation of data may be 
provided that often only requires the theoretical minimal 
sample usage, being twice the cardinality of the Support, 
even in the presence of noise. 

It is an advantage of at least some embodiments of the 
present invention that a sparse representation of data may be 
provided by selecting an advantageous distribution of the 
data samples. 

It is an advantage of at least some embodiments of the 
present invention that a sparse representation of data may be 
provided in which the conditioning of the involved numeri 
cal processes is controlled efficiently. 

It is an advantage of at least some embodiments of the 
present invention that a sparse representation of data may be 
obtained from less measurements than dictated by the 
Nyquist rate. 

It is an advantage of at least some embodiments of the 
present invention that an acceptable quality sparse repre 
sentation may be provided in which the cardinality of the 
Support may be determined iteratively or by a numerical 
sparsity test condition. 

It is an advantage of at least some embodiments of the 
present invention that an acceptable quality sparse repre 
sentation may be provided at a low computational complex 
ity cost. 

It is an advantage of at least some embodiments of the 
present invention that an overall sparse data representation 
may be provided that may be constructed from smaller size 
partial problems. 

It is an advantage of at least some embodiments according 
to the present invention that an appropriate representation of 
data can be obtained, by working with some select 2t 
samples obtained at Smart locations, in other words locations 
such that the functions in the plurality of functions when 
evaluated in the plurality of sample points satisfy a recur 
rence relation. The algorithmic complexity for the recon 
struction of the signal, can be as low as quadratic in t 
(without an additional effort it is no higher than cubic in t). 

It is an advantage of at least some embodiments according 
to the present invention, that a sampling technique is 
obtained that is, when applicable, computationally more 
efficient than compressed sensing, in the data collection step 
as well as in the modelling step. 

It is an advantage of at least some embodiments according 
to the present invention, that a denoising step and the 
required annihilation property in the finite rate of innovation 
based method can be avoided. 

The above objective is accomplished by a method and 
device according to the present invention. 

In a first aspect, the present invention provides a com 
puter-based method for characterising data dependent on at 
least one variable. Thus, a method according to embodi 
ments of the present invention may be a method for obtain 
ing an acceptable-quality reconstruction of data, e.g. a 
signal. The method comprises obtaining a family of func 
tions having a domain corresponding to the at least one 
variable and a codomain corresponding to the data. The 
family of functions also may be referred to as a plurality of 
functions. The functions of the family of functions share a 
common construction parameterized by at least one param 
eter. Thus, a method according to embodiments of the 
present invention may comprise identifying a signal, in 
which the signal f may be represented by a sparse represen 
tation. 

The method further comprises obtaining, e.g. selecting a 
magnifying factor or retrieving a previously stored or pre 
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4 
viously implemented value for controlling a spacing 
between elements in a finite sequence of sampling points 
wherein the data will be sampled. Obtaining the magnifying 
factor may be determining the magnifying factor in an 
automated and/or automatical way by the computer-based 
method. The finite sequence of sampling points may also be 
referred to as a plurality of sampling points. Obtaining a 
magnifying factor may, for instance, but not solely, be 
performed for controlling a numerical conditioning of the 
characterising of the data. Alternatively or in addition 
thereto, obtaining also may be performed for reducing the 
number of samples below the Nyquist rate, or for any other 
Suitable reason, . . . . Furthermore, the method comprises the 
step of obtaining a finite sequence of measurements of the 
data by Sampling the data in a finite sequence of sampling 
points. The finite sequence of measurements also may be 
referred to as a plurality of measurements. This finite 
sequence of sampling points is being controlled by the 
magnifying factor and is being determined such that the 
values of the functions of said family of functions in said 
finite sequence of sampling points satisfy a recurrence 
relation. The finite sequence of Sampling points is thereby 
controlled by the obtained magnifying factor. The spacing 
between different sampling points may be unequal, but 
regular. Thus, a method according to embodiments of the 
present invention, may comprise Smart sampling the signal 
to obtain the finite sequence of measurements. The method 
further comprises outputting a property of the data taking 
into account the finite sequence of measurements. Such a 
property may be a representation of the data, but alterna 
tively also may be a degree of numerical conditioning, a 
cardinality, an identification of the parameters in the sparse 
representation, etc. The method furthermore may comprise 
determining a Subset of the family of functions, said deter 
mining making use of said recurrence relation satisfied in 
said finite sequence of sampling points. In a method accord 
ing to embodiments of the present invention, this determin 
ing may comprise developing a matrix structure from the 
recurrence relation, in which the dimension of the matrix 
may be at least txt, in which t denotes the cardinality of the 
Support. In a method according to embodiments of the 
present invention, this determining of the Subset may com 
prise developing a data matrix from the finite sequence of 
measurements in accordance with the matrix structure. 

Outputting a property of the data may comprise outputting 
a representation of the data based on the subset of said 
family of functions. In a method according to embodiments 
of the present invention, the method may comprise (re) 
constructing a sparse representation for the data from the 
data matrix. 

Function parameters defining functions of the determined 
subset of said family of functions may at least not all be 
integer. 

In a method according to embodiments of the present 
invention, the magnifying factor may be an integer or a 
rational number. In a method according to embodiments of 
the present invention, the magnifying factor may be different 
from one, e.g. larger than one. 

In a method according to embodiments of the present 
invention, the number of the finite sequence of measure 
ments, also referred to as the number of sampling points, 
may be less than dictated by the Nyquist rate. 

In a method according to embodiments of the present 
invention, the subset of said family of functions may be a 
sparse Subset. 

In a method according to embodiments of the present 
invention, the common construction may be parameterized 
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by at least one continuous parameter. In a method according 
to embodiments of the present invention, the common 
construction may be parameterized by at least one discrete 
parameter. 

In a method according to embodiments of the present 
invention, the method may comprise, prior to obtaining the 
family of functions, applying a transformation on the data 
for selecting a domain corresponding to said at least one 
variable and a codomain corresponding to the data. Alter 
natively or in addition thereto, the method may comprise 
applying a transformation on the finite sequence of mea 
Surements after said obtaining the finite sequence of mea 
SurementS. 

A method according to embodiments of the present inven 
tion may further comprise determining a set of weight 
factors for representing the data as a linear combination of 
said Subset. 

In a method according to embodiments of the present 
invention, the determining of the Subset may comprise 
Solving a numerical problem obtained from said recurrence 
relation. The numerical problem may be an eigenvalue 
problem and/or a generalized eigenvalue problem. In a 
method according to embodiments of the present invention, 
the sensitivity of this numerical problem may be controlled 
by the selecting of the magnifying factor. Obtaining the 
magnifying factor may comprise selecting the magnifying 
factor for controlling a numerical conditioning of the char 
acterising of the data. Obtaining the magnifying factor may 
alternatively or in addition thereto comprise selecting the 
magnifying factor for reducing the number of sampling 
points below less than dictated by the Nyquist rate. 

In a method according to embodiments of the present 
invention, the finite sequence of sampling points may have 
a predetermined cardinality. In a method according to 
embodiments of the present invention, the cardinality of the 
finite sequence of sampling points may be imposed as a 
predetermined cardinality. In a method according to embodi 
ments of the present invention, the cardinality of the finite 
sequence of sampling points may be probed for by evalu 
ating a sparsity condition. Determining the cardinality, e.g. 
probing or imposing may be performed in an iterative 
manner. The predetermined cardinality also may be altered. 

In a method according to embodiments of the present 
invention, the method may comprise performing a sparsity 
check by determining a numerical rank of a matrix or 
matrices constructed from the recurrence relation using the 
finite sequence of measurements. 

Performing the sparsity test may be performed before or 
concurrently with the Smart sampling. 

In a method according to embodiments of the present 
invention, the sampling points may comprise multivariate 
components. 

In a method according to embodiments of the present 
invention, the determining of the Subset may comprise an 
inverse application of a technique based on the Chinese 
remainder theorem. 

In a method according to embodiments of the present 
invention, the family of functions may comprise a basis. 

In a method according to embodiments of the present 
invention, the common construction may comprise a com 
plex exponential. 

In a method according to embodiments of the present 
invention, the common construction may comprise mono 
mials or multinomials. 
A method according to embodiments of the present inven 

tion, may furthermore comprise a divide and conquer step 
prior to the identification of the signal. In a method accord 
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6 
ing to embodiments of the present invention, the Smart 
sampling may be performed jointly with or after the divide 
and conquer step. 
The matrices representing the recurrence relation may be 

Square or rectangular. 
Obtaining measurements may comprise further sampling 

the data in a further finite sequence of sampling points in 
order to take into account a periodicity of the family of 
functions in determining a Subset of the family of functions. 

Further sampling the data in a further finite sequence of 
sampling points thereby may be such that a location of the 
further finite sequence of sampling points is at least also 
determined by a value of an identification shift for uniquely 
determining the elements in said Subset. 
A method for characterising data as described above, the 

steps of the method being computer-implemented. 
In a second aspect, the present invention also provides a 

computer-program product, e.g. Stored in non-transitory 
form on a computer-readable medium, for, when executed 
on a computing means, performing a method as described 
above. The present invention also relates to the transmission 
of Such a computer program product over a local or a wide 
area network, as well as to a data carrier, e.g. a computer 
readable storage device, comprising Such a computer-pro 
gram. 

In a third aspect, the present invention provides a device, 
e.g. a computer-based device, for characterising data depen 
dent on at least one variable. The device comprises a 
numerical processing unit adapted for obtaining, for the data 
to be characterised, a finite sequence of measurements of the 
data by Sampling the data in a finite sequence of sampling 
points, the finite sequence of sampling points being con 
trolled by a magnifying factor for controlling a spacing 
between elements in the finite sequence of sampling points 
and being determined such that the values of the functions 
of a family of functions in the finite sequence of sampling 
points satisfy a recurrence relation. The family of functions 
thereby has a domain corresponding to the at least one 
variable and a codomain corresponding to the data. The 
family of functions shares a common construction param 
eterized by at least one parameter. The numerical processing 
unit furthermore is adapted for determining a property of the 
data. The device furthermore may comprise an output means 
for outputting the property of the data, taking into account 
the finite sequence of measurements. 
The device furthermore may comprise an input means for 

obtaining one or more of the data to be characterised, the 
family of functions or the magnifying factor. In a device 
according to embodiments of the present invention, this 
input means may comprise a sensor for gathering a plurality 
of measurements on a signal. A device according to embodi 
ments of the present invention, may further comprise a 
memory for storing the finite sequence of measurements. In 
a device according to embodiments of the present invention, 
the numerical processing unit may be adapted for processing 
the finite sequence of measurements to obtain an acceptable 
quality reconstruction of the signal. 

In still a further aspect, the present invention relates to a 
method for obtaining an acceptable-quality reconstruction of 
data. This method comprises the steps of dividing the data 
into a plurality of segments, for example but not necessarily 
segments of Substantially equal length. 

In yet a further aspect, the present invention relates to a 
method for obtaining an acceptable-quality reconstruction of 
a signal comprising identifying a signal, wherein the signal 
is represented under a predetermined set of a plurality of 
functions, wherein the plurality of functions share a com 
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mon construction; running the sparsity test to determine the 
cardinality of Support t; developing a matrix structure from 
the common construction, wherein the dimension of the 
matrix is at least txt, Smart sampling the first signal to obtain 
a plurality of measurements; developing a data matrix with 
the plurality of measurements in accordance with the matrix 
structure; and sparse reconstructing a representative func 
tion from the data matrix. 

The present invention also relates to a signal representing 
data, to be characterised, modelled or reconstructed, 
whereby the signal is obtained using a method as described 
above. 

Particular and preferred aspects of the invention are set 
out in the accompanying independent and dependent claims. 
Features from the dependent claims may be combined with 
features of the independent claims and with features of other 
dependent claims as appropriate and not merely as explicitly 
set out in the claims. 

These and other aspects of the invention will be apparent 
from and elucidated with reference to the embodiment(s) 
described hereinafter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates an exemplary method according to 
embodiments of the present invention. 

FIG. 2 schematically shows a device according to 
embodiments of the present invention. 

FIG. 3 shows a clustering of eigenvalues on the unit 
circle, as can occur in an example according to an embodi 
ment of the present invention. 

FIG. 4 and FIG. 5 show a relocation of eigenvalues on the 
unit-circle, as can be obtained in an example according to an 
embodiment of the present invention. 

FIG. 6 shows a clustering of eigenvalues not on the 
unit-circle, as can occur in an example according to an 
embodiment of the present invention. 

FIG. 7 shows a relocation of eigenvalues not on the 
unit-circle, as can be obtained in an example according to an 
embodiment of the present invention. 

FIG. 8 shows an EEG signal and a corresponding recon 
structed signal, as can be obtained in an embodiment accord 
ing to the present invention. 

FIG. 9 shows an EOG signal and a corresponding recon 
structed signal, as can be obtained in an embodiment accord 
ing to the present invention. 

FIG. 10 shows the error curves for compressed sensing 
reconstruction of an audio signal (with 1229 random 
samples), as known from prior art. 

FIG. 11 shows the error curves for compressed sensing 
reconstruction of an audio signal (with 456 random 
samples), as known from prior art. 

FIG. 12 shows a result of the transient detection using a 
method according to an embodiment of the present inven 
tion. 

FIG. 13a to FIG.14d illustrate two examples of compari 
Sons between known reconstruction techniques and a data 
reconstruction technique according to an embodiment of the 
present invention. 
The drawings are only schematic and are non-limiting. In 

the drawings, the size of Some of the elements may be 
exaggerated and not drawn on Scale for illustrative purposes. 
Any reference signs in the claims shall not be construed 

as limiting the scope. 
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8 
In the different drawings, the same reference signs refer to 

the same or analogous elements. 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
EMBODIMENTS 

The present invention is described with respect to par 
ticular embodiments and with reference to certain drawings 
but the invention is not limited thereto but only by the 
claims. The drawings described are only schematic and are 
non-limiting. In the drawings, the size of Some of the 
elements may be exaggerated and not drawn on Scale for 
illustrative purposes. The dimensions and the relative 
dimensions do not correspond to actual reductions to prac 
tice of the invention. 

Furthermore, the terms first, second and the like in the 
description and in the claims, are used for distinguishing 
between similar elements and not necessarily for describing 
a sequence, either temporally, spatially, in ranking or in any 
other manner. It is to be understood that the terms so used 
are interchangeable under appropriate circumstances and 
that the embodiments of the invention described herein are 
capable of operation in other sequences than described or 
illustrated herein. 

Moreover, the terms top, under and the like in the descrip 
tion and the claims are used for descriptive purposes and not 
necessarily for describing relative positions. It is to be 
understood that the terms so used are interchangeable under 
appropriate circumstances and that the embodiments of the 
invention described herein are capable of operation in other 
orientations than described or illustrated herein. 

It is to be noticed that the term "comprising, used in the 
claims, should not be interpreted as being restricted to the 
means listed thereafter; it does not exclude other elements or 
steps. It is thus to be interpreted as specifying the presence 
of the stated features, integers, steps or components as 
referred to, but does not preclude the presence or addition of 
one or more other features, integers, steps or components, or 
groups thereof. Thus, the scope of the expression "a device 
comprising means A and B should not be limited to devices 
consisting only of components A and B. It means that with 
respect to the present invention, the only relevant compo 
nents of the device are A and B. 

Reference throughout this specification to “one embodi 
ment” or “an embodiment’ means that a particular feature, 
structure or characteristic described in connection with the 
embodiment is included in at least one embodiment of the 
present invention. Thus, appearances of the phrases "in one 
embodiment' or “in an embodiment in various places 
throughout this specification are not necessarily all referring 
to the same embodiment, but may. Furthermore, the particu 
lar features, structures or characteristics may be combined in 
any Suitable manner, as would be apparent to one of ordinary 
skill in the art from this disclosure, in one or more embodi 
mentS. 

Similarly it should be appreciated that in the description 
of exemplary embodiments of the invention, various fea 
tures of the invention are sometimes grouped together in a 
single embodiment, figure, or description thereof for the 
purpose of streamlining the disclosure and aiding in the 
understanding of one or more of the various inventive 
aspects. This method of disclosure, however, is not to be 
interpreted as reflecting an intention that the claimed inven 
tion requires more features than are expressly recited in each 
claim. Rather, as the following claims reflect, inventive 
aspects lie in less than all features of a single foregoing 
disclosed embodiment. Thus, the claims following the 
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detailed description are hereby expressly incorporated into 
this detailed description, with each claim standing on its own 
as a separate embodiment of this invention. 

Furthermore, while some embodiments described herein 
include some but not other features included in other 
embodiments, combinations of features of different embodi 
ments are meant to be within the scope of the invention, and 
form different embodiments, as would be understood by 
those in the art. For example, in the following claims, any of 
the claimed embodiments can be used in any combination. 

In the description provided herein, numerous specific 
details are set forth. However, it is understood that embodi 
ments of the invention may be practiced without these 
specific details. In other instances, well-known methods, 
structures and techniques have not been shown in detail in 
order not to obscure an understanding of this description. 
Where in embodiments of the present invention reference 

is made to functions having a domain corresponding to at 
least one variable, reference is made to functions associating 
an output with an input from the domain of the at least one 
variable. 
Where in embodiments of the present invention reference 

is made to a codomain of a function, reference is made to a 
target set wherein the output of the function should fall. 
Where in embodiments of the present invention reference 

is made to a family of functions, reference is made to a 
plurality of functions sharing a common construction, i.e. 
the functions in the family are instantiations of the same 
parameterized mathematical expression. 
Where in embodiments of the present invention reference 

is made to numerical conditioning, reference is made to the 
sensitivity of the computation of the numerical result with 
regard to the perturbation of the input to that computation. 
Where in embodiments of the present invention reference 

is made to a recurrence relation, reference is made to a 
mathematical expression wherein terms are recursively 
defined. 
Where in embodiments according to the present inven 

tion, reference is made to data to be represented, reference 
may for example be made to geological data, mathematical 
data, chemical data, biological data, physical data Such as for 
example signals, images or video, Sound data Such as voice 
or music data, medical images, sensor data such as bioelec 
trical data like EEG data, ELG data, EMG data, ECG data, 
EOG data, magnetic resonance imaging data, telecommuni 
cation transmission data, textual data etc. It may be time 
varying measurement data, control system data correspond 
ing with control system signals that control other device or 
systems, . . . . The data may be a registration of a physical 
effect and may be referred to as physical data. The data may 
be intended to depict the state of an object for measurement, 
which may be a patient’s brain as in EEG or a picture of the 
earth as in a seismic Survey. 
Where in embodiments of the present invention reference 

is made to sparse data, Such embodiments are not only 
applicable to sparse data, but are equally applicable to data 
that can be sparsely approximated, the latter also being 
encompassed by the claims of the present invention. Data or 
a model representing these data, can be called sparse if it is 
advantageous to separately determine the Support for the 
model from the measurements, rather than determine only 
the weights in the model as in a dense representation. Since 
this determining of the Support requires (at least) twice as 
much measurements as the cardinality of the sparse Support, 
the cardinality should not be more than half the number of 
basis functions necessary in a comparable dense represen 
tation. A sparse characterisation of the data may also be 
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10 
more precise than a dense characterisation in terms of basis 
elements, if the basis elements do not capture the charac 
teristics of the data equally well, e.g. when using a discrete 
basis compared to a family of functions parameterized by at 
least one continuous parameter. 

In a first aspect, the present invention relates to a com 
puter-based method for characterising data dependent on at 
least one variable. Such data may be continuous data or 
discrete data. The method can be applicable to a vast range 
of applications, such as for example but not limited to 
biomedical signal processing, audio and video signal pro 
cessing, civil engineering, telecommunication and/or tele 
monitoring, high-resolution imaging, data describing physi 
cal and chemical phenomena, textual data etc. The method 
comprises obtaining a family of functions, e.g. {{p:ke.K., 
having a domain corresponding to the at least one variable 
and a codomain corresponding to the data. This family of 
functions shares a common construction parameterized by at 
least one parameter, e.g. keK with d being larger than or 
equal to 1. The number of variables of the functions (p need 
not equal the number d of parameters, but in most of the 
illustrations and examples below that is the case. The 
method further comprises obtaining a magnifying factor, e.g. 
but not solely for controlling a numerical conditioning of the 
characterisation of the data, and obtaining a finite sequence 
of measurements of the data by Sampling the data in a finite 
sequence of sampling points. This finite sequence of Sam 
pling points, e.g. {SW.j=0,..., 2t-1}, is determined such 
that the function values, e.g. {{p(SV):keK}, in this finite 
sequence of sampling points satisfy a recurrence relation. 
The finite sequence of sampling points is furthermore deter 
mined such that a spacing between different sampling points 
is controlled at least by the magnifying factor. The method, 
in some embodiments, furthermore may comprise determin 
ing a subset, e.g. {p,0: i=1,. . . . , t) = {p:keK}, of the 
family of functions. Such a property of the data may be a 
representation of the data. This determining of the subset 
makes use of the recurrence relation satisfied by the finite 
sequence of measurements. Possibly some additional Sam 
pling is required because the periodicity of the functions, 
e.g. (p., does otherwise not allow the unique identification of 
the Subset. The method furthermore comprises outputting a 
property of the data, determined taking into account the 
finite sequence of measurements. The property of the data 
may be a representation of the data, e.g. X, 'O,(p?i). 

It typically may be desirable to obtain an acceptable 
quality characterisation of the signal. The term “acceptable 
quality” herein refers to a level of accuracy sufficient to 
depict the state of the object faithfully for the selected 
application. Characterising data may comprise analysing the 
data with respect to the number and value of the dominant 
parameters present in the data, modelling the data, e.g. 
constructing a mathematical model for representing the data, 
and/or reconstructing the data, e.g. providing a sufficient 
description of the data in order to reconstruct the original 
data or extrapolate the original data. Such sufficient descrip 
tion may preferably be a concise description, e.g. a sparse 
representation, for example for the purpose of data com 
pression. 

Referring to FIG. 1, an exemplary method (10) for 
characterising data dependent on at least one variable 
according to embodiments of this first aspect of the present 
invention is shown. 
The exemplary method (10) comprises obtaining (12) a 

family of functions, e.g. {{p:keK}, having a domain cor 
responding to the at least one variable and a codomain 
corresponding to the data. In order words, each function of 
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this family of functions projects points in the domain of the 
at least one variable on which the data is dependent onto 
points in the codomain of the data. This family of functions 
shares a common construction parameterized by at least one 
parameter, e.g. keK with dequal to or larger than 1. The 5 
number of variables of the functions (p need not equal the 
number d of parameters, but in most of the illustrations and 
examples below that is the case. For example, this family of 
functions may be expressed in function of a shared math 
ematical expression, in which each function is identified by 
a specific parameter choice for each parameter in this 
expression. One example may be by a multivariate polyno 
mial, another example may be by a trigonometric function. 
The at least one parameter may be a single Scalar parameter, 
for example a parameter taking a complex, real, rational, 
integer or natural numeric value. The at least one parameter 
may also be a vector composed of Such scalar components. 
The common construction may be parameterized by at least 
one continuous parameter, for example a parameter select 
able from an uncountable parameter set, e.g. at least one real 
or complex numeric parameter value. Where reference is 
made herein to real or complex values, it is understood that 
in a digital implementation, e.g. an implementation in com 
puter Software, such continuous parameters may be an 
approximation up to a hardware or software specific limit of 
an underlying continuous entity, for example determined by 
a machine epsilon value. This common construction may 
also be parameterized by at least one discrete parameter, e.g. 
a parameter selectable from a countable parameter set. This 
family of functions may comprise a basis for the data 
domain. The common construction may comprise monomi 
als or multinomials, wavelets, trigonometric functions or 
functions based thereon, etc. The common construction may 
comprise a complex exponential. 
The method (10) further comprises obtaining (14) a 

magnifying factor, e.g. r, e.g. but not solely for controlling 
a numerical conditioning of the characterisation of the data. 
This magnifying factor may be a scalar, e.g. an integer or a 
ratio of integers. In embodiments according to the present 
invention this magnifying factor may be one or larger, or 
may be strictly larger than one. This magnifying factor may 
control a numerical conditioning of the characterisation of 
the data, e.g. the numerical conditioning of the step of 
determining (18) a subset of the family of functions as 45 
discussed further hereinbelow. This magnifying factor may 
also control a level of compression of the data and/or 
influence the level of accuracy of determining (18) a subset 
of the family of functions and determining (20) a set of 
weight factors for representing the data. This obtaining may 
comprise assigning a predetermined value to this magnify 
ing factor, evaluating the numerical conditioning, e.g. deter 
mining a condition number of a matrix, and adjusting this 
value, e.g. additively or multiplicatively adjusting the mag 
nifying factor by a predetermined or randomly selected 55 
amount. Such procedure may be iterated until a satisfactory 
numerical conditioning, e.g. a condition number of a matrix, 
or a satisfactory level of compression of the data or level of 
accuracy of the characterisation, below a predetermined 
threshold, is reached. Alternatively, a predetermined number 60 
of Such magnifying factor trials may be performed, and the 
best case, e.g. corresponding to the lowest condition number, 
may be selected. This condition number may refer to a 
matrix involved in the step of determining (18) a subset of 
the family of functions, for example to a Vandermonde 65 
matrix related to the matrices involved in solving a gener 
alized eigenvalue problem or eigenvalue problem in order to 
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determine (18) the subset of the family of functions. The 
magnifying factor determines a spacing between the differ 
ent sampling points. 

Furthermore, the method (10) comprises obtaining (16) a 
finite sequence of measurements of the data by sampling the 
data in a finite sequence of sampling points. This finite 
sequence of sampling points, e.g. {S': j=0,..., 2t-1}, is 
determined such that the function values, e.g. {p(SV): 
keK}, in this finite sequence of sampling points satisfy a 
recurrence relation. Such recurrence relation may enable the 
determining of the subset of the family of functions, shown 
by step (18) in FIG. 1. The spacing between the different 
sampling points in the finite sequence of sampling points 
may furthermore at least be determined by the magnifying 
factor. For example, a recurrence relation may state that 
(p(S)=p(S'){p(SV), for j+1d-0, in which S' may be 
considered a value which may be freely adjusted, e.g. by the 
magnifying factor r, without invalidating the recurrence 
relation, e.g. from an initial value S' to a value (S') or 
r(t). 

This obtaining (16) of the finite sequence of measure 
ments may comprise applying a suitable transformation of 
the data or signal to another domain and/or codomain. For 
example, a wavelet transform, a Fourier transform or a 
cosine transform or another transformation may be applied. 

This finite sequence of sampling points may have a 
predetermined cardinality, e.g. 2t. For example, the number 
of sampling points may be known a priori, e.g. determined 
by prior knowledge about the data to be characterised and/or 
known properties of the family of functions. The cardinality 
of the finite sequence of sampling points may be iteratively 
increased in order to impose a satisfactory predetermined 
cardinality. For example, first two measurements corre 
sponding to first two sampling points may be obtained (16) 
and a first function from the family of functions may be 
determined (18) for these first two sampling points, then a 
second two measurements may be obtained (16) correspond 
ing to second two sampling points, and a Subset of the family 
of functions may be determined (18) jointly for the first two 
and second two measurements, and so on until a predeter 
mined number of sampling points has been reached. Such 
procedure may result in a sequence of Subsets not necessar 
ily being Subsets of each other—of increasing size, which 
may be used in combination to characterise the data in 
combination, or by selection of an optimal Subset from this 
sequence, e.g. by evaluating a goodness of fit or other 
quality measure. Furthermore, the cardinality of the finite 
sequence of sampling points may be iteratively determined 
by evaluating a sparsity condition. For example, a sequence 
of Subsets may be evaluated for increasing or decreasing 
sizes, in which a sparsity condition determines a stopping 
point for this sequence. For example, such sparsity condition 
may comprise a numerical rank of a matrix representing for 
example an eigenvalue problem and/or generalized eigen 
value problem which is solved for determining (18) the 
subset. The cardinality thus may be predetermined, probed 
for or imposed, and probing for or imposing may be per 
formed in an iterative manner. By way of illustration, 
embodiments of the present invention not being limited 
thereto, the optional step of probing for the cardinality is 
shown in FIG. 1 by step (17). Depending on the way the 
cardinality is introduced, a corresponding step can be per 
formed before selecting a magnifying factor (indicated as 
step (14) in FIG. 1), iteratively, or at a different moment 
during the procedure. 
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The method, in one embodiment, also may be adapted for 
monitoring a change and for adjusting the cardinality as 
function thereof. 
Remember that the steps of selecting a magnifying factor 

and obtaining measurements may be performed iteratively. 
Advantageously, the number of Sampling points may be 

less than the Nyquist rate for the data to be characterised, 
e.g. in order to provide a sparse characterisation of the data. 
The sampling points, e.g. S', may be univariate sampling 
points, or may comprise multivariate components, e.g. S.'. 

The method (10) furthermore comprises determining (18) 
a subset, e.g. {poi=1,. . . , t) = {p:keK}, of the family 
of functions for providing a representation of the data. In 
embodiments of the present invention, this subset may be a 
sparse Subset of the family of functions, e.g. may comprise 
a Small fraction of the total number of functions, e.g. may 
comprise only a fraction of the number of functions neces 
sary to provide a basis of the space spanned by the family of 
functions. The Subset may form a mathematical Support for 
constructing a linear model Suitable for representing the 
data. 

This determining (18) of the subset makes use of the 
recurrence relation satisfied by the finite sequence of mea 
Surements. For example, the recurrence relation may enable 
the determination of the subset {{p,0:i-1, . . . , t) by means 
of an eigenvalue problem or generalized eigenvalue problem 
constructed by means of this recurrence relation. For 
example, eigenvalues may be determined for a problem of 
the form Av=WBV, in which the entries in the txt matrices A 
and B are composed with the 2t finite sequence of measure 
mentS. 

The determining (18) of the subset may comprise apply 
ing an inverse application of a technique based on the 
Chinese remainder theorem. For example, components of 
multivariate sampling points may be chosen Such that com 
ponents of the parameter characterising the Subset elements 
may be determined taking into account a relative prime 
relationship of these components in a solution of the eigen 
value problem and/or generalized eigenvalue problem. For 
example, eigenvalues may be determined and each of these 
eigenvalues may be factored into prime components corre 
sponding to the parameters of the Subset components. 
The sensitivity of the eigenvalue problem and/or gener 

alized eigenvalue problem may be controlled by the selec 
tion of the magnifying factor. Obtaining (16) measurements 
may furthermore comprise sampling the data in a further 
finite sequence of sampling points in order to take into 
account a periodicity of the family of functions in determin 
ing (18) a subset of said family of functions. For example, 
the family of functions may be a family of sinusoid or 
complex exponential functions, and a further finite sequence 
of sampling points may be acquired in order to uniquely 
determine the parameters identifying the subset. This addi 
tional finite sequence of sample points may be governed by 
Some shift, e.g. p. Sometimes referred to as identification 
shift and introduced further below. 
The method (10) may furthermore comprise the step of 

outputting a property of the data, which may be a represen 
tation. In one example, determining a representation may for 
example comprise determining (20) a set of weight factors, 
e.g. {C, i=1, . , t), for representing the data as a 
combination of the determined Subset, for example as a 
linear combination, e.g. X, ?o,(p?i), of the elements in said 
subset. 

In a second aspect, embodiments of the present invention 
also relate to computer-implemented methods for perform 
ing at least part of the methods for characterising data. 
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14 
Embodiments of the present invention also relate to corre 
sponding computer program products. The methods may be 
implemented in a computing system. They may be imple 
mented as Software, as hardware or firmware, as embedded 
system or as a combination thereof. Such methods may be 
adapted for being performed on computer in an automated 
and/or automatic way. In case of implementation or partly 
implementation as Software. Such software may be adapted 
to run on a Suitable computer or computer platform, based 
on one or more processors. The Software may be adapted for 
use with any suitable operating system such as for example 
a Windows operating system, Mac operating system or 
Unix-based operating system. The computing means may 
comprise a processing means or processor for processing 
data. According to some embodiments, the processing 
means or processor may be adapted for characterising data 
according to any of the methods as described above. Besides 
a processor, the computing system furthermore may com 
prise a memory system including for example ROM or 
RAM, an output system such as for example a CD, DVD or 
Blu-ray drive or means for outputting information over a 
network. Conventional computer components such as for 
example a keyboard, display, pointing device, input and 
output ports, etc. also may be included. Data transport may 
be provided based on data busses. The memory of the 
computing system may comprise a set of instructions, 
which, when implemented on the computing system, result 
in implementation of part or all of the standard steps of the 
methods as set out above and optionally of the optional steps 
as set out above. The obtained results may be outputted 
through an output means such as for example a plotter, 
printer, display or as output data in electronic format, 
embodiments of the present invention not being limited 
thereto. 

Further aspects of embodiments of the present invention 
encompass computer program products embodied in a car 
rier medium carrying machine readable code for execution 
on a computing device, the computer program products as 
such as well as the data carrier such as CD-ROM, DVD, 
Blu-ray or memory device. Aspects of embodiments fur 
thermore encompass the transmitting of a computer program 
product over a network, such as for example a local network 
or a wide area network, as well as the transmission signals 
corresponding therewith. The present invention thus also 
relates to a computer-program product, e.g. Stored in non 
transitory form on a computer-readable medium, for, which 
executed on a computing means, performing a method 
according to the first aspect of the present invention. 

In a third aspect, the present invention relates to a device 
(30) for characterising data dependent on at least one 
variable. Referring to FIG. 2, such a device (30) comprises 
a numerical processing unit (32) adapted for obtaining, for 
the data to be characterised, a finite sequence of measure 
ments of the data by sampling the data in a finite sequence 
of sampling points. This finite sequence of sampling points 
is controlled by a magnifying factor for controlling a spacing 
between elements in the finite sequence of sampling points 
and being determined such that the values of the functions 
of a family of functions in the finite sequence of sampling 
points satisfy a recurrence relation. As indicated, a spacing 
of the different sampling points of said finite sequence of 
sampling points is controlled at least by a magnifying factor 
r. Additional sampling may occur, governed by a shift value 
p, for unique determination of the subset of the family of 
functions. This family of functions have a domain corre 
sponding to the at least one variable and a codomain 
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corresponding to the data. The family of functions further 
more share a common construction parameterized by at least 
one parameter. 
The numerical processing unit (32) furthermore is adapted 

for determining a property of the data. The numerical 
processing unit may further be adapted for determining a 
Subset, e.g. a sparse Subset, of the family of functions, for 
representing the data, e.g. in which this Subset provides a 
Support for the representation of the data. This determining 
may make use of the recurrence relation satisfied by the 
finite sequence of measurements. 
The device also comprises an output means (33) for 

outputting a property of the data. 
The device furthermore may comprise an input means 

(31) for obtaining one or more of the data to be character 
ised, the family of functions or the magnifying factor. 
A device according to embodiments of the third aspect of 

the present invention may comprise hardware components, 
e.g. semiconductor integrated circuitry, and software com 
ponents, e.g. instructions adapted for executing on a pro 
gram logic unit in Such semiconductor integrated circuitry, 
for performing methods according to the first aspect of the 
present invention. Alternatively such a device also may be 
implemented as Software, e.g. making use of predetermined 
algorithms or neural networks. The device may furthermore 
comprise components adapted for performing the function 
ality of one or more method steps or features as described in 
the first aspect. 

In still another aspect, the present invention also relates to 
data, or a signal representing data, to be characterised, 
modelled or reconstructed, whereby the data and/or the 
signal are obtained using a method according to embodi 
ments of the present invention. 
By way of illustration, embodiments of the present inven 

tion not being limited thereto, theoretical principles of 
embodiments of the present invention as well as detailed 
examples are elucidated further hereinbelow. These theo 
retical principles and considerations are not intended to limit 
the present invention in any way, and are merely included in 
order to clarify working principles of the present invention. 

Theoretical considerations that may be used are illustrated 
below. The following setting may for example be used. 

Consider a (multi)parameterized vector (p, with the d-di 
mensional parameter k belonging to K where KCC and K 
is bounded. In theory (p can belong to an infinite dimen 
sional vector space and K can be an infinite set. In practice 
(p may be a finite dimensional vector and K may be a 
(possibly very large but) finite set. We assume that the set 
d(K): ={(p:keK} contains at least one basis of the vector 
space. We assume that the elements k of K can be ordered 
in some way. We are either interested in vectors (p that are 
discretized versions of (multi)parameterized functions. Such 
as (cos(kS''),..., cos(kS") with d=1, keK, or directly in 
their continuous counterparts, here cos(kx). For simplicity, 
we denote both vectors by the continuous counterpart, here 
cos(kx). The number of variables need not equal the number 
d of parameters, but in this illustration it does. To explicit the 
dependence of p, on the discrete instantiations SV for x or 
(S, , . . . , S.A) for (x1,..., x), we may also write p(x) 
or p(X, . . . . X) respectively. 
Examples where a 1-dimensional parameter d (d=1) is used 
a. 

K={0, 1, 2, . . . . M-1}, a finite subset of the natural 
numbers, and the monomials (p(x)=x, 

KC{ke IR: Ik|<M}, a bounded subset of real numbers, 
and the vectors (p(x) exp(IkX), 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
KC {keC: 9 (k)|<M}, a finite bounded subset of com 

plex numbers, and p(X)=cos(kx). 
Examples where a more-dimensional parameter d (d1) is 

used are: 
K={0, 1, 2, . . . , M-1}, K={(k, . . . . k.):k,6K, 

i=1,..., d) and the multinomials (p. , (x1, . . . . 
X)-Xx ... XX?, 

KC {keIR Ik|<M}, K={(k,...,k):k,6K, i=1,..., d) 
and the vectors p, (x1, . . . . x.) exp 
(I(kX+ . . . +k,X)). 

i=1,..., d) and the multivariate (p. (x1, . . . . 
X)=cos(kxi)x . . . Xcos(kx). 

Unless otherwise stated all coefficients in the subsequent 
linear combinations may be or are complex numbers. Now 
assume that the data vector f can be represented sufficiently 
well by the sparse representation shown in equation 1. 

feX', 'C4.6), k=(k', ..., ki), 1. 
where the numbert is small compared to the dimension K of 
the subspace spanned by d(K). Traditionally, using dense 
approximation or interpolation methods, K Samples are 
required where K-dim(spand(K)), because the problem is 
approached as feX, “O,(p, where {{p:1eisK} is a basis for 
spand(K). Then it may happen that a lot of (numerically) 
zero coefficients C, e.9f{k', . . . . k} are unnecessarily 
computed. In sparse methods, the parameter vectors k'are 
determined separately from the coefficients C, and the joint 
computation of the k' and the C, requires only 2t samples 
instead of K samples. Remember that t<K. 

Furthermore, we deal with functions (p, with keK that 
satisfy a property of the following kind. The vectors (p are 
such that a finite sequence of samples {p(S)}, o, . . . . 2t-l 
exists that allows for the support {k', ...,k} in the linear 
combination representing f. to be characterized from a txt 
generalized eigenvalue problem shown in equation 2 

where the entries in the txt matrices A and B are composed 
with the 2t samples {f(S)}, o, . . . . . off. These sample 
points SV may be referred to as smart sample points. In the 
sequel of our description, the above construction may every 
where be replaced by somewhat larger Txt rectangular 
matrices A and B with T-t and involving somewhat more 
sample vectors {p(S), o, . . . . . 24(1-1. . . . Without 
departing from the invention. The numerical linear algebra 
problems are then solved in some best approximation sense 
instead of exactly. 

Examples of sets d(K) satisfying this property are, for 
instance: 

d=1, K={0, 1,2,..., M-1}, {p(x)=x', S'-exp(I2L/M), 
j=0,..., 2t-1, which is further detailed and generalized 
to d-1 hereinbelow; from the fact that p(S)= 
(p.(S'){p(S) the values (p.(S'), and hence the param 
eter k, can be computed separately from a generalized 
eigenvalue problem as in equation 2: d=1, KC{ke 
C: 9 (k)|<M/2}, {p(x)=cos(kx), SV=2L/M, j=0,..., 
2t-1, which is further described hereinbelow; here the 
recurrence (p.(Si)+(p.(SV)-2(p.(S')4), (S) allows 
the separate computation of p(S'), and consequently 
of the parameter k, from a generalized eigenvalue 
problem as in equation 2. 

Since 2t samples of f determine 2t matrix entries, the 
matrices A and B are bound to be structured in one way or 
another. The specific structure reflects the recurrence satis 
fied by the (multi)parameterized elements (p. in combination 
with their evaluation at the particular sample points S. 
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Because of the crucial role played by the sample locations 
and because of the specific structure of the matrices A and 
B reflecting the recurrence relation satisfied by the d, the 
conditioning of the Subsequent generalized eigenvalue prob 
lem (for the computation of the support k') and the subse 
quent linear interpolation problem (for the computation of 
the coefficients C.) is dominated by the conditioning of the 
Vandermonde matrix composed with the Smart samples. 
This is made clear further hereinbelow. 
The following are simple illustrations of the situation. The 

first example illustrating the use of multivariate polynomials 
is of use in the audio signal processing and transient detec 
tion application that will be given as illustrations further in 
this description. The second example illustrating the use of 
trigonometric functions is of use in the biomedical signal 
application that will be given as illustration further in the 
description. 
The first example illustrates the use of multivariate poly 

nomials. Let k be the multi-index k =(k', ..., k, ) and 
let (p?i) be the multinomial 

ki) (i) 
, Xd) = X1 (p.(i) (V1, ... X... xx; 

A possible order of the d-dimensional multi-indices is for 
instance (0. . . . , 0), (1, 0, . . . . 0), . . . , (0, . . . . 0, 1), (2. 
0, ...,0), ... and so on. Let us identify, up to an acceptable 
error, f with the sparse polynomial f(x1, ..., x)=X, 'C',(p. 
(i)(x1, . . . , X). We collect the values of f at points 
(x1, . . . , X)=(S, , . . . . ) which are the s-th powers of 
some suitably chosen (S,..., S.): f. f(S)-f(S, , ....S.), 
S=0, 1, 2, . . . . 
With the values f we fill the Hankel matrices 

f Ji-1-1 

Hi" = t , u = 0, 1. 

fait-1 Ji-2–2 

Then the support {k', . . . . k} of the polynomial f is 
uniquely obtained from the generalized eigenvalues 
W. . . . . W, satisfying equation 3 

H. v.-Hv, i=1,...,t, 3) 
if the sample point (S. . . . . ) is chosen appropriately. For 
instance, if the mutually prime numbers p, bound in a strict 
sense the partial degree of f in the variable x, then with 
m px . . . xpr co-exp(I21/m), S, co", i=1,..., d, the 
generalized eigenvalues are of the form (o'i where 

Ki = k?' -- ... +k), i = 1, ... , i. 
p; Pd 

The roots of unity of relatively prime order possess the 
property that f=1, Sz1, 1sj<p, Hence the individual 
k', ..., k, can be retrieved from a reverse application 
of the Chinese remainder theorem. The structured general 
ized eigenvalue problem expresses the relation between the 
multinomials (pl), ..., p(f) and the sample point coordinates 
S.', S', S,, . . . . With db, p,0(S. . . . . S.). A diag 
(d. . . . . d.), D-diag(C.. . . . . C.) and 
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1 1 1 

d1 d2. d, 
W = 

d1-1 d2-1 ... dit-1 

we have H(0)=WDW', HC-WADW' and hence H, 
v, -d, H. v., i=1,. . . . . t. For the p() and the S, under 
consideration, we further have d, d-co' so that W is 
actually a Vandermonde matrix constructed with the 
d,=d'. Finally, the coefficients C, in the sparse represen 
tation f(x1, ..., x)=X, 'O,(pi) (x1,..., x) are determined 
from the interpolation problem X, 'C',(p() (S. . . . . )=f. 
sj, ..., j+t-1, where the k', ..., k are known now and 
j is any index between 0 and t. One can show that H,' and 
H' are regular. Furtherdown, we develop a sparsity test 
which reveals the cardinality t of the sparse support, should 
it not be known or given in advance. 
The second example illustrates the use of trigonometric 

functions, which may for example find application in signal 
processing. Suppose 

Then f(X)+f(-x) is an even function containing only the 
cosine terms and f(X)-f(-x) is an odd function containing 
only the sine terms. Since every sine term in the odd part of 
the function can be replaced by a shifted cosine term of the 
form cos(OX-T/2), it suffices to deal with the sparse cosine 
interpolation of f(x)=x, 'c, cos(kx), where the phase shift 
is absorbed in the coefficient. The reason for the latter is that 
for f(x) X, 'C', cos(y,x+ö.) X, "(C, cos 8,)cos(Y,X)-X, "(C, 
sin 8,)sin(Y,X), we have (f(x)+f(-x))/2-x, "(C, cos 8,)cos 
(Y,X). 
Traditionally the values k are discrete multiples, even 
integer multiples of 2L. We relax this to include complex 
k'. If the frequencies k are ordered such that 
0s 9 (k')<9 (k’)< . . . <R(k)<M/2, then a uniform 
sampling rate of at least M is required for an aliasing-free 
reconstruction. Choose (D=2L/M, evaluate f f(sco), s= . . . . 
-2, -1, 0, 1, 2, ... and fill the Hankel-plus-Toeplitz matrices 

2f J.-1 -- J.-1 J. H-1 -- J.-H-1 
(s.>) 2f1 J.-2 -- f J. ht -- J.-H.2 
Ar = 

2fit-1 J. ht -- J.-H-2 Js 2-2 -- f 

2f J.-1 -- J.-1 J. H-1 -- J.-H-1 

(s.<) 2?-1 f +f- fit-2 + f-t 
A' = : : : 

2f-t+1 f-t+2 + f-f ... f. f-2+2 

and 

With d, cos(k'sco), A=diag(d. . . . . d, .), 
D-diag(C. . . . . C.) 
and 
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1 1 ... 1 

d1 d2. d 
W = 

d1-1 d2-1 ... dit-1 

we have B=WADW and hence the d, are obtained 
from the generalized eigenvalue problem 

with s—1. For the cosine functions (p=cos(k'x) and the 
sample locations X=S-sco we further have 

where L is a txt lower triangular matrix with diagonal entries 
(1, 1, 2, . . . . 2). So again a Vandermonde matrix, now 
composed with the d=cos(k'co), is involved in the gen 
eralized eigenvalue problem. When 9 (k)<M/2, then we 
have 9 (k')co<t and hence k is uniquely determined by 
the eigenvalue cos(k'co). Further hereinbelow we explain 
how to deal with the situation where different frequencies 
k' and another choice for co give rise to the same eigenvalue 
cos(k' (o). 

Finally the coefficients C., .. 
interpolation problem 

X, 'C', cos(k’so) if, S-i, ... j+t-1, 

... C., are determined from the 

where again the index j takes any value between 0 and t. By 
virtue of the fact that the (complex) frequencies k'are fixed 
by the generalized eigenvalue problem stemming from the 2t 
interpolation conditions, t interpolation conditions are 
obtained for free. 

Before we further discuss examples of the smart distri 
bution of the sample points, we illustrate how a shift in the 
basis functions, from p(x1, . . . . X) to p(X+S, ..., X+s) 
in the multinomial case, or from cos(Y,X) and sin(C,X) to 
cos(Y,X+ö,) and sin(C,X+T,) Sometimes can be of use. 
The object f may enjoy a sparse representation in one 

basis and a non-sparse representation in another one. For 
instance, the expression 1+(x+2)' is sparse in the shifted 
basis (p(x)=(x+2), ke0 while it is non-sparse in the basis 
(p(x)=x, ke0. Finding a sparse shift may be a useful 
preprocessing step in the reconstruction of f. 

In the polynomial case, it is known that for any two 
representations of a univariate polynomial of degree K-1 in 
two shifted power bases, respectively with t and t terms, it 
holds that 

6 

This implies that if either tort are less than or equal to 
K/2, then that representation is the unique sparsest one, 
because it is impossible for another equally sparse or sparser 
representation to satisfy t+tak. Similarly, when the (p are 
a finite number of vectors arranged in a matrix C (cp. 
(p. . . . ), then a representation as a linear combination of the 
(p. is unique if it is built with less than spark(C)/2 elements. 
Here spark(C) is the smallest number of linearly dependent 
columns of C. 

In addition, we already know how to deal with phase 
shifts in a signal f(x)=X, 'C', cos(Y,X+6). From the sum rules 
in trigonometry we obtain 
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f(x) = fo?t- 2. aicosocos(yiv), 

f(x) = 1 = -), asinosino), 

The frequencies Y, can be determined from f(x) and there 
fore no more than 2t samples are required from f(X) or, in 
other words, 4t samples of f. The coefficients and phase 
shifts are determined from the linear interpolation of f(x) 
and f(x) using the same 4t samples. 

In the following. Some principles that can be used in 
embodiments of the present invention are illustrated, such 
working principles not being intended to limit the present 
invention in any way. Steps for computing the cardinality of 
the unknown Support and weight coefficients are now dis 
cussed. The following principles illustrate an example of 
how sampling may be determined. 

In the sparse representation indicated above there are in 
total 2t+1 unknowns: the number of terms t itself, the 
support {k', . . . , k} and the nonzero coefficients 
C.. . . . . C. As outlined before, we consider the choice of 
the set of vectors d(K) fixed a priori and fully determined 
by the nature of the phenomenon that we are modelling. 
We now discuss an example of the computation of the 

2t+1 unknowns. The complexity of all algorithmic steps is 
given below. We also describe how the so-called Smart 
sampling off at the same time can control the conditioning 
of the numerical processes. The conditioning is further 
controlled as indicated further below, where a technique is 
given to chop up a sparse modelling problem of size t in 
problems of smaller size. By a combination of the methods 
described, the widespread belief that the sparse representa 
tion techniques from coding theory cannot be carried to a 
noisy numeric environment can be countered. 

In brief, a reconstruction of f from a minimal or small 
number of samples can be computed following the different 
steps outlined and Summarized below, discussed in more 
detail further in the description: 
1. Samples of fare, for instance, collected at powers of 

exp(27tl/m) or multiples of 2.7L/M with m and M as 
described above. The primitive roots of unity and their 
properties can advantageously be used in the theory, 
especially when introducing a magnifying factor. 

2. If the process is one of reconstructing an exact sparse 
representation off, then the value of t is revealed during 
the collection of the samples, as will be shown below. If 
the process is one of approximating f by a sparse model 
of the form expressed by equation 1), thent is determined 
by the user in function of the required accuracy. 

3. With 2t samples at our disposal, we compute the support 
{k', . . . . k} - K" by expressing the relationship 
between consecutive sampled elements (p(S) for s=0, 
1,..., such as a multiplicative rule or a 3-term recurrence 
relation. This relationship gives rise to a generalized 
eigenvalue problem as illustrated above. Possibly some 
additional sampling is required because the periodicity of 
the functions (p does otherwise not allow the unique 
identification of the subset {k', ..., k} CK". 

4. After the Support is known, the coefficients C. . . . , C, in 
the model expressed by equation 1 are obtained from a 
subset of t interpolation conditions. Because of fixing the 
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Support in the generalized eigenvalue problem, an addi 
tional t interpolation conditions are satisfied automati 
cally. 
In a first step, an illustration of how sampling could be 

handled is discussed, embodiments of the present invention 
not being limited thereto. The sensitivity of the generalized 
eigenvalue problem Av=WBv is measured in the condition 
number cond(), B'A) which is bounded above for all by 
the condition number of the matrix whose columns are the 
right eigenvectors. From the matrix factorizations for A and 
B we see, for instance, that both in the polynomial and the 
trigonometric example the right eigenvectors are the col 
umns of W. Hence the conditioning of the generalized 
eigenvalue problem is dominated by cond(W)=|WII-IIWII. 
Because of the relationship between W and the Vander 
monde matrix V constructed with the nodes d, the value 
cond (W) is mostly determined by cond(V). 

In general, Vandermonde matrices can be poorly condi 
tioned. But when the nodes making up the matrix are in 
Some way evenly distributed the conditioning is optimal. 
Even less uniform sequences of nodes may lead to Small 
condition numbers of Vandermonde matrices. So in the 
sparse models discussed above, the possibility exists to work 
with well-conditioned matrices. We now detail how to 
control this conditioning during the sampling off. We can 
select the location of the sample points in function of the 
conditioning, while maintaining the recurrence relation sat 
isfied by the (p.(SV) expressed above by in equations (3) and 
5. These locations could be referred to as smart locations. 
We recall that 

|VI = max 
lsist 

and that the norm of the inverse Vandermonde matrix is 
bounded by 

t 

|V| s max 1 + 1D1 
cx - lsist i=1,i-Fi Id; - di 

We now take a closer look at d=co' in the multinomial 
case and d,=cos(k'co) in the cosine case. In both cases () 
is related to a primitive root of unity. It is the argument of 
or it is itself the primitive root of unity: (i)=2|L/M or 
co-exp(27tI/m). 

Let us start with the multivariate polynomial example. 
With the d,7- in the closed unit disk, the norm of the 
Vandermonde matrix is bounded by 

|Yst, 
and the norm of the inverse Vandermonde matrix is bounded 
by 

-l 21–1 
IV's max 

sist t 

| Id - d. 

with equality for the latter if (but not only if) all d, lie on 
a single ray originating from the origin. So clearly, the 
distribution of the d, affects the conditioning. The optimal 
conditioning of V is achieved when the d, are evenly 
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distributed on the unit circle or in the interval -1.1. In the 
multinomial case we writed, -d-co"-co's and AIK,-K, 
with K, K, eN and hence 

Because all d, lie on the unit circle, we have 1sAsfloor 
(m/2). The worst conditioning of V happens when all 
A-1 and the co" are adjacent m-th roots of unity. The 
optimal conditioning occurs when all A, satisfy floor(m/ 
(t–1))sAsceil(m/(t–1)). The latter reflects an (almost) 
even distribution on the unit circle. Although the K, are fixed, 
it is possible to redistribute the evaluations d =co' on the 
unit circle as follows. Randomly choose a magnifying factor 
re1, . . . , m-1} with r and m relatively prime and replace 
() by exp(2 tir/m). This means replacing S, by co". Then 
K, becomes 

and A, is replaced by (rl K-K,I)mod(floor(m/2)). If t<m. 
then there exists A6N, AD-1 such that for the new values, 
with high probability, AeA and ii 

min 
Isist Isist 

iFi 
(2-2cos(27tAilm)) 

iti 

is acceptable. We illustrate this with the following example. 
Take the univariate (d=1) sparse model specified by 
m=p=401, t-4, k=397, k=398, k=399, k=400. 
Then the eigenvalues are clustered as in FIG. 3 (r-1) and 
roughly cond (V)-4.16x10°. Now randomly choose 
0<rsm. Then the eigenvalues are relocated as in FIG. 4 (for 
r=229) and FIG. 5 (for r=347) with condition numbers 
respectively given by cond.(V)=5.87x10" and cond. 
(V)=1.90x 10'. 

In the trigonometric example, using cosine elements (p?i) 
with real k (or for 9 (k)) combined with a similar 
relocation of the sample points as above, we find that 

t 

-l 1 +cos(2itkr/M) 
IV's max 

Isist litti cos(27tk(i)rfM) - cos(27tk(j)rfM) 
i=l, if 

where re{ 1, . . . . M-1} and r and M are relatively prime 
(when choosing a rational value r p?d we check whether p 
and qM are relatively prime). Again, the bound on VII is 
acceptable for real k, (or for 9 (k)), with high probability, 
if by choosing the magnifying factor r, the angles 27tkr/M 
are suitably distributed. This is the case, for instance, when 
they are (almost) evenly distributed on the unit circle, 
meaning that the d, =cos(2tkr/M) are the Chebyshev 
nodes. Then 

4. 

| V | < W27 T. (I) 
cx - 2t 

where T, is the Chebyshev polynomial of the first kind of 
degreet. Another case is when the d, are evenly distributed 
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in the interval -1.1. Then the bound is only slightly worse. 
So for real frequencies k (or for 9 (k)), the above 
redistribution guarantees reasonable bounds on the condi 
tion number. The magnification of 27tk/M to 27trk'/M to 
improve the conditioning, can also be used when either M is 
very large, or when some frequencies k are complex. We 
illustrate the latter with an example. Consider the univariate 
(d=1) sparse model specified by M=401, t—4, k=197-17.1, 
k=198, k=199-I0.57, k=200+I5.2. Then the eigenval 
ues are clustered as in FIG. 6 with cond (V)=1.54x10. 
With r=15 the condition number drops to cond (V)=2.07x 
10 and the eigenvalues are relocated as shown in FIG. 7. 
We point out that when redistributing the sample points 

from 2 US/M, s=0,..., 2t-1 to 2 Isr/M, S-0, . . . , 2t-1 for 
an r which is mutually prime with M and where 0<9 (k') 
<M/2, then the cosine arguments 219 (k)r/Mare bounded 
above by rot instead of by J.L. Consequently, in the current 
example, the frequency k' is not uniquely determined 
anymore by the eigenvalue cos(27tk'r/M). An example of 
how this problem can be overcome is indicated below. 

The conditioning of the Vandermonde matrix can be 
further controlled by a divide-and-conquer technique 
described further below. This technique allows to limit the 
size of the Vandermonde matrices involved. In this way one 
also bounds the growth of the conditioning: a larger sparse 
fitting problem is divided into smaller subproblems of which 
the solutions can be reassembled into the solution of the 
larger problem. 

In the following step, an example is provided of how the 
sparsity can be determined or tested, embodiments of the 
present invention not being limited thereto. When we are 
approximating f by a sparse model of the form in equation 
1, then the value of t is determined by the accuracy 
required by the user, or the value of t is imposed. If we are 
reconstructing an exact sparse f, then the correct value oft 
may be revealed during the sampling process. 

Indeed, interesting facts hold for the matrices A and B in 
the generalized eigenvalue problems shown in equations 3 
and 5, and more generally for the matrices A and B in 
equation 2 that one obtains in a similar way from the use 
of general elements (p?i). The txt matrices A and B are regular 
and more can be said about the principal minors of A and B. 
From the Cauchy-Binet formula it is proved that all txt 
principal minors (t-t) are algebraically nonzero expressions. 
By algebraically nonzero we mean that the minor is not an 
identically zero expression whatever d, . Only particular 
values for d, can produce an occasional Zero for the 
determinant. Moreover, for any size t>t the determinants of 
A and B are identically Zero. For t=t the determinants of A 
and B are guaranteed to be nonzero if the d, z0 and 
d, zd, for distinct i and j. 

These statements allow to reveal, with high probability, 
the cardinality t of the Support, concurrently with the sam 
pling. By building principal minors of increasing size, the 
value of t is obtained as the numerical rank of either A or B. 
The latter is computed using the singular value decomposi 
tion which is a well-conditioned problem for which very 
stable algorithms exist. 

In the following step, it is illustrated how, in one example, 
the Support can be uniquely extracted, embodiments of the 
present invention not limited thereto. In the class of prob 
lems we are dealing with, the generalized eigenvalues 
W. . . . , W may typically be related one-to-one to the 
elements (p?i) that make up the sparse representation given in 
equation 1. For instance, in the multinomial example 
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for Smartly chosen (). A reverse application of the Chinese 
remainder theorem then reveals the multi-indices k()= 
(k', . . . . k.) and hence the elements 

ki) (i) k 
W d . . Wii 

i = 1, ... , it 

in equation 1. In the trigonometric example, with S-1 in 
equation 5), cos(k'co) for co–2L/M. The value k is 
easily obtained from , if 0<9 k)<M/2, because then 0< 
9i (k)(1)=9 (k’)2L/M31. The latter condition is not satis 
fied if, in the sampling process, a magnifying factor r is used. 
Then 0<h<k').co=9 (k)2rt/M-rat, with 1sr-M and gcd 
(r. M)=1. 

For the sake of generality, we consider the problem when 
exp(Ik'co). When 1sr-M, the set of frequencies corre 

sponding to this eigenvalue consists of K={k+1M/r:le 
Z}?h-rat,rt, #Kr. 
Now comes the task of identifying the correct k'eK. This 
is easy, at the expense of an additional t samples f. at the 
points 

g(sp)= 27(Sr + O.) 
M 

S = i, ... , i + i - 1 

with 0<lp|<M, gcd(p, M)=1, gcd(p, r)=1 and je{0, . . . . 
t} (when choosing a rational value p-u/v we check whether 
Land vMare relatively prime, and the same foru and Vr, this 
extends in the same way to p and r both rational). We 
proceed as follows. 
With the eigenvalues d-exp(Ik'2rt/M) we compose the 
txt matrix V where V is the Vandermonde matrix with nodes 
d, Note that the eigenvalues d, come in a certain order, 
which need not respect the assumed order 
0<|9 (k)|< . . . <19 (k) because the k are still 
unknown. But we can already compute the coefficients 
C.1. . . . , C, e.g. from 

Cl fo (7) 

Ot fi-1 

So we associate an eigenvalue d, with the coefficient O, in 
the sparse model of equation 1. Now the newly collected 
samples at SP can be interpreted as 

This gives the linear system of equations 
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This linear system has the same coefficient matrix as in 
equation 7. After computing the new unknowns 
C,exp(Ik'2tp/M) for i=1,. . . . , t, we can divide these 
unknowns by the C, computed above. So to each i=1,. . . . 
t are tied two sets of candidate frequencies, namely on the 
one hand K, and on the other hand 

We know they are tied together because they both go with 
the same coefficient C., from equation 1. Because of the 
relationship between r, p and M, we have for each 
i=1,. . . , t that K, nK, is a singleton, hence 

K?h K ={k}, i=1,..., i. 
If desired, the k can be renumbered to satisfy 
Os|S} (k)|< ... < 9 (k). 
Note that the number of required additional samples is 
dictated by the nature of the element (p. For p exp(IkX), an 
additional t samples Suffice. For p cos(kx) we need 2t 
additional samples at S“P and SP to be combined into 
(f.e. +f.)/2, Sj. . . . , j+t-1 with je(0, . . . , t). And 
remember that with r=1 or for non-periodic p, no additional 
samples are required. 
By way of example, in the following step, an illustration 

of how the reconstruction can be performed is described 
below, embodiments of the present invention not being 
limited thereto. 

Despite having 2t samples at our disposition, there is no 
need to compute the coefficients C, i=1,. . . , t in equation 
1 from a (2t)xt least Squares problem. As indicated above, 
a txt interpolation problem is sufficient. An additional t 
interpolation conditions are linearly dependent and come for 
free because of the fact that the support parameters 
k', . . . . k are fixed by the generalized eigenvalue 
problem. If d, still denotes the element (pi) evaluated at the 
(s+1)-th smart sample point, where the values for k are 
obtained in the previous step, then the C, are obtained from 

di. d, C f 

P1-1 P.+1-1 C Ji+1-1 

i e {0, ... , i. 

In the following example, it is illustrated how one copes 
with complexity, embodiments of the present invention not 
being limited thereto. The sampling involves O(t) measure 
ments and the sparsity test, generalized eigenvalue problem 
and final interpolation problem require altogether O(t) 
operations using standard off-the-shelf implementations. In 
the numerical linear algebra algorithms, the structure and 
symmetry of the matrices A, B and W can further be 
exploited to bring the complexity down to O(t). This is in 
sharp contrast to the technique of compressed sensing where 
fis approximated by an optimal (in the 1 norm sense) linear 
combination of t elements selected out of a large signal 
dictionary. The number of measurements required by com 
pressed sensing does not only depend on the sparsity t but 
also on the dictionary size. Moreover, its algorithmic com 
plexity depends on the sparsity t, the dictionary size and the 
Nyquist rate M. 
By way of illustration, an alternative to bring the com 

plexity further down, referred to as a divide-and-conquer 
technique, is described below, embodiments of the present 
invention not being limited thereby. 
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26 
While our smart choice for the sample points controls and 

slows down the growth of the condition number of the 
Vandermonde matrices V, it may still be insufficient to keep 
the conditioning within the desired bounds. If this occurs, 
the following technique, used to Solve a system of linear 
congruences, can be applied. It is based on the connection 
between periodicity and modular or clock arithmetic. 
Assume that, while building the principal minors of the 

matrices A or B in order to obtaint, we note that t is growing 
to such extent that V becomes ill-conditioned. Or assume 
that one is interested a priori in a sparse model with a rather 
large t, for instance because the k are not really few but 
rather are spread out quite a lot. Then it may be useful to 
divide t into a sum t=+t + . . . +t, t, z0, i=1,..., n. 
We describe how this splitting of equation 1 into 

8) 

can be carried out. Again the properties of the elements (p?i) 
in combination with the sample points play a role. As an 
example we treat the case (p,0(x)=exp(I2tk'x) with k' 
integer, which is at the basis of the trigonometric family of 
functions and the polynomials. The latter is not a restriction 
since essentially each k'in our discussion is a floating-point 
number, hence rational, and then the sparse modelling 
problem can be reformulated such that k is integer. With 
0<k''< ... <k.<M/2 and 0<h<M-1 fixed, we define 

2.0-0-1,0), H-ty U, "I ={k, ..., k(t)} 

The evaluations 

t of h (i) gh (ye) = aexp(2nk (t + ). 
y = i fin, 

f = 0, ... , n - 1 

can be reassembled as 

For the p?i) in use and the sample pointsy, we have the useful 
property for 1slsn-1 that 

because (o'=1. In addition, for l=0 it holds that 

Therefore 

2-1 2-i I27tkih 
co'gi (y) = o;exp - 

f-0 
kieli 

Ii = (k) = imodin, 
i = 1, ... ii. 

In this way, the n evaluations g(yo), ..., g(yi) for a fixed 
h are equivalent to one evaluation of the n separate partial 
Sums off given in equation 8. This step can be repeated for 
different values of h to provide the required number of 
samples. A simple test reveals whether a set I, has remained 
empty during the procedure: then the Zero value for the 
partial sum over I, must persist throughout different values 
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for h. Should the cardinalities tj=1,..., n still be too large, 
the division step can be repeated with a larger n. 
By way of illustration, embodiments of the present inven 

tion not being limited thereto, a number of applications is 
further discussed below. Sparse techniques generate com 
pact models, while sparse sampling tackles the data deluge. 
The new technique realizes all this with very low compu 
tational complexity. Hence the number of applications is 
plentiful. Sparse representations are most popular in: 

biomedical signal processing (bio-electrical signals, MRI, 
tomography, shape representation and recognition, 
medical scanners, BCI. . . . ), 

signal processing (speech signals, audio and video sig 
nals, filtering, compression, digital cameras, hologra 
phy, hyperspectral imaging. . . . ). 

civil engineering (pressure waves, power systems, Sonar, 
electrical and electronic engineering. . . . ), 

telecommunication/telemonitoring (wireless transmis 
sion, sensor networks, ambient living, wideband, mul 
tiband, analog-to-information conversion, . . . ). 

high-resolution imaging (high-frequency radar, tele 
Scopes, geophysical data, Surface characterization, 
unmanned Surveillance. . . . ), 

physics and chemistry (constant coefficient differential 
equations, autoregressive methods, econophysics, time 
Series. . . . ). 

Methods according to embodiments of the present inven 
tion could for example be implemented for all these appli 
cations. By way of illustration, examples for the first three 
application domains are shown below. Each of these worked 
out examples have connections with the other application 
domains mentioned above and hence are very representa 
tive. 

Turning now first to the example of biomedical signals. 
The acquisition and processing of bioelectrical signals that 
appear in the human body is a common theme in clinical 
studies for evaluating the health status of a patient. The 
electrical activity of cells and tissue can be recorded from 
different organs. Examples of bioelectrical recordings are 
the electrocardiogram (ECG), the electroencephalogram 
(EEG), the electrollaryngram (ELG), the electromyogram 
(EMG) and the electro-oculogram (EOG), which measure 
respectively the electrical activity in the heart, brain, larynx, 
muscles and eyes. The current medical monitoring devices 
become Smaller and wireless and hence demand ever more 
Sophisticated techniques to acquire and process data. The 
new sampling and approximation technique can be used to 
reduce the amount of data samples to be stored or transmit 
ted. Using trigonometric or dedicated functions for the 
functions (pi) in a method according to embodiments of the 
present invention, the biomedical signals can be recon 
structed from far less measurements than usual. 
As is common practice in signal processing, the bioelec 

trical signal is partitioned in Smaller windows. We approxi 
mate the signal in each window by an expression of the form 
of equation 1 with an a priori fixed t which is constant over 
the considered window. The samples are collected at a 
fraction 1/r of the Nyquist rate M (in Hertz), hence achieving 
a compression rate of (100/r)%. The reconstruction follows 
at least some of the features described herein. Here t 
typically is fixed a priori and is sufficiently small. Each 2t 
samples cover a window of length 2tr/M (in seconds) and the 
information in the underlying signal is represented as 

with k', i=1,... , t and C, i=1,... , t as described above. 
Alternatively, a phase shift can be included. We show the 
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28 
representation of both an EEG and an EOG signal in FIG. 8 
(M=250, r–9, t—6) and FIG. 9 (M=250, r=11, t—3) respec 
tively. The data are taken from the site www.cs.colos 
tate.edu/eegfeegSoftware.html#keirndata. 
We note that both signals were filtered using a bandpass 

filter of 1-20 Hz before applying the new technique, but this 
step can be omitted. Typically, a similar result can be 
achieved for an unfiltered EEG or EOG signal from about 
10% of the original data sampled at 250 Hz. 

Likewise, (biomedical) scanners can be made faster 
because the amount of data that needs to be collected to 
reconstruct an image can be hugely reduced. Considering 
the fact that the image is almost certainly compressible— 
when combined with an appropriate transform—one can 
immediately reduce the number of measurements. And the 
fact that the measurements are not collected in a random 
way, guarantees that the reconstruction is entirely predict 
able. Also the image reconstruction time is very reasonable 
because of the low complexity of the new technique. 

In a second particular example, the application of audio 
signal processing is discussed. To restore a signal from 
samples, the classical theory says that one needs to have 
sampled at the Nyquist rate, which is (at least) twice the 
bandwidth or maximum component frequency of the signal. 
On the other hand, when represented in terms of appropriate 
elements (p. Such as trigonometric functions with non 
integer frequencies or wavelets, most signals have relatively 
few nonzero coefficients and hence are compressible. 
Besides offering a compact representation, our technique 
also has an impact on the acquisition. Our minimal number 
of required samples 2t is directly proportional to the number 
of terms t in the sparse model for the information carried by 
the signal. To reconstruct the signal from only a fraction of 
the number of samples required traditionally, embodiments 
according to the present invention are used. We illustrate the 
procedure on a simple audiofile taken from Sunbeam.ece 
.wisc.edu/cs.audio? and we compare the results with the ones 
obtained using compressed sensing. 
A Song containing 29 notes, each lasting 0.25 seconds and 

each decaying according to the same model (only the real 
frequency k differs), namely 

is sampled industrially at M=44100 Hz, meaning that x in 
the equation above takes the values x-j/44100 for 
j=1,..., 11025. The result is a data vector of 319725 entries 
for the song or 11025 samples per note. The 100 valid 
frequencies k in sin(27tkX), which form a pianobasis, vary 
between 16.35 and 4978.03. The melody can be seen as a 
linear combination oft—29 vectors, each containing only one 
note, meaning one instance of equation 9 for some valid 
frequency k, during one particular quarter of a second with 
the 28 other quarter seconds blank. When undersampling the 
Song randomly at about 42 samples per note (1229 samples 
in total), a reconstruction following the compressed sensing 
principle reveals a combination of pianobasis frequencies 
that approximates the Song quite well. Because of the 
randomness in the sampling, the reconstructed signal may 
vary. To illustrate the probabilistic aspect, we plot the 
resulting error curves for the reconstructed signal compared 
to the original song, obtained in 5 different runs. The 5 error 
curves for a compressed sensing reconstruction of the audio 
signal (1229 random samples) in FIG. 10 confirm that the 
reconstruction is almost perfect: errors are of the magnitude 
of 10 to 10 on average. 
When repeating the experiment with only about 16 ran 

dom samples per note (456 samples in total), the reconstruc 
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tion using the compressed sensing technique fails, as can be 
seen in FIG. 11, containing the 5 error curves for a com 
pressed sensing reconstruction of the audio signal (456 
random samples). 
When using the new technique, replacing the expression 5 

sin(27tkX) by 

hence doubling the number of terms to t—58, all frequencies 
can be retrieved exactly and the error curve is of the order 
of machine precision. But what is most remarkable is that 
per note only 6 samples are necessary, resulting in a total of 
only 174 samples for a perfect reconstruction. The sampling 
is an application of techniques as described above. Because 
of the large value for M, namely M=44100, the usual 
distance between consecutive sample points S=S/M and 
S''''1)/M is very small and may lead to ill-conditioning. 
Even for the identification of only one note from a 2x2 
generalized eigenvalue problem, the condition number of 
the underlying Vandermonde matrix is reduced by a factor 
10 if the samples are redistributed according to S=rs/M 
and S''''1)/M with the magnifying factor r satisfying 
gcd(r, M) 1. As explained, in that case, for a unique retrieval 
of the frequencies k, the uniform sampling needs to be 
performed twice, once to collect2t samples with magnifying 
factor r, and once to collect an additional t samples with 
identification shift p, satisfying gcd(p, M)=1, gcd(r,p)=1. 
So, putting it all together, we have that per note t-2, that 
hence 2t 4 samples per quarter second are required, and that 
an additional t-2 Samples are used for the unique identifi 
cation of the frequency. So we need 6 samples per note. For 
the audio signal in question we took r–3659 and p=11. 

Let us add a note on the side. The recognition that the 
amount of information in many interesting signals is much 
Smaller than the amount of raw data produced by conven 
tional sensors, should lead to the development of a sparse 
sensor. Rather than first acquiring a massive amount of data 
and then using algorithms to compress it, the sparse acqui 
sition and compact representation can now be combined. 
Possible applications include, besides audio signals, also 
imaging, digital cameras, tomography, analog-to-informa 
tion conversion, etc. 

In a third example, detection of a transient is discussed. A 
transient is used to refer to any signal or wave that is short 
lived. Transient detection has applications in power line 
analysis, speech and image processing, turbulent flow appli 
cations, to name just a few. For instance, in a power system 
signal, which is highly complicated nowadays because of 
the constantly changing loads and the dynamic nature, 
transients can be caused by many things, such as lightnings, 
equipment faults, Switching operations and so on. Transients 
are then observed as short lived high-frequency oscillations 
Superimposed on the Voltages or currents of fundamental 
frequency, being 50/60 HZ, as well as exponential compo 
nents. A signal model incorporating these discontinuities can 
be given by 
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where C, is the amplitude, Y, is the frequency (an integer 
multiple of the fundamental frequency), Ö, is the phase 
angle, B, is the damping factor and a, and Z, are the starting 65 
and ending times of the component. When expressing 
Ce") cos(27ty,x+8,) as 

30 

2 2 

the technique as illustrated in embodiments above can be 
applied. We point out that this rewrite implies that the model 
now contains 2t terms instead oft. Hence in the sequel we 
refer to the number of terms in the model by 2t. It is known 
that it is difficult to take the discontinuities from 1 into 
account, meaning the damped signals to start at different 
instants. Using our sparsity test described above, the method 
can detect at each instant how many (and afterwards which) 
components are present in the signal. We model the synthetic 
signal for which 

a 1.2 =0,0.03081, a2,220.0308,0.0625ffaz, 
=0.0625,0.1058, 

or expressed in multiples of the applied sampling rate 
M=1200, 

a z =OLM,37/MI, faz=37/M,75/MI, faz=75/ 
M,127/MI. 

This implies that at every moment only one term is 
present in the signal, but the characteristics of that term may 
change. So the actual 2t equals 2. We have furthermore the 
parameter values in the table, 

C; f; Y; 8, 

1 1.OOO O 60 -Ji, 2 
2 1.OOO O 60 -J.2 
3 1.OOO O 60 33f4 

In FIG. 12 (with M-1200, r1 and 2t=2), we show merely 
the result of the discontinuity detection (the actual values of 
the parameters C, B, Y., Ö, can of course be determined 
simultaneously). When 2t=2, then our test reveals that the 
singular value decomposition shown in FIG. 12 of the 
slightly larger 2 (t+1)x2 (t+1) matrix H' (or Ha') delivers 
two clearly nonzero and two numerically Zero singular 
values. This pattern is disrupted every time a sample Sneaks 
into the matrices that does not belong to the signal that is 
being monitored, in other words at x=37/M, 75/M, 127/M. 
Because the matrices contain the samples f. . . . . f. the 
disruption is visible from X=31/M, 69/M, 121/M on. The 
disruption disappears as soon as the samples are all in line 
again with the same 2t underlying components. 
We did not make use of a magnifying factor r here. Too 

sparse sampling may even overlook the transient. The 
advantage of our technique is that it reveals the structure in 
the signal, a structure that classical methods have difficulties 
with. In addition, we mention that uniformly distributed 
noise in -0.05.0.05 was added to the samples of the 
synthetic signal. 
By way of illustration, a comparison with known tech 

niques is given below, indicating features and advantages of 
embodiments of the present invention. The classic way to 
decompose a signal in terms of complex exponential com 
ponents exp (IkX) is to compute its Fourier transform. For 
the discrete Fourier transform of a signal f containing 
frequencies k that satisfy Ost (k)|<M/2, the signal is 
sampled at S-2TS/M, S-0, ..., M-1 to avoid aliasing of 
the frequencies, that is, various frequencies adopting the 
value of one particular frequency, usually the Smallest 
positive frequency of all the aliased ones. Besides the 
aliasing problem, there is also the problem of leakage 
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because of the discrete values for k in the components exp 
(IkX): spikes in the power spectrum that cannot be caught 
exactly, leak out into nearby parts of the spectrum. The latter 
problem can be avoided by allowing a continuum of fre 
quencies as in de Prony’s method. De Prony developed a 
method to extract valuable information from a uniformly 
sampled signal and build a model using Sums of exponen 
tials with unknown exponents. In our notation, de Prony’s 
result is the following. Let 

For co-2L/M and f exp(Isco), s=0,..., 2t-1 with (in 
general) 2-1<M, the frequencies k' and the amplitudes C, 
can be determined. But the conditioning of the problem 
strongly depends on the distribution of the frequencies of the 
signal (see the FIG. 3-5). In de Prony’s method, as it is 
known up to now, there is no remedy for this possible 
ill-conditioning. As described above, the choice is offered of 
using a magnifying factor r to control the conditioning. As 
a consequence r(2t-1)<M is not satisfied in general any 
more. The problem that arises because of this, is that the 
frequencies corresponding to the eigenvalues W., i=1,..., t 
are not uniquely defined anymore: their real part is bounded 
in absolute value by rat instead of by L. A solution for the 
latter is also described above. To summarize: 

With the Fourier transform, one samples the signal in the 
time domain at the Nyquist rate and computes a rep 
resentation in a discretized frequency domain. Because 
of the discrete frequencies the representation may not 
be sparse while the signal is, 

Using de Prony's method, the Nyquist rate still dictates 
the sampling interval, but fewer samples are required. 
The allowed continuity of the frequency domain avoids 
the leakage problem and leads to truly sparse models. 
But de Prony's method is often ill-conditioned and then 
useless. 

Embodiments of the present invention offer a technique 
using samples spaced at a (proper) multiple of the 
Nyquist rate, and valid for a discrete as well as a 
continuous frequency range. 

This is now illustrated with two synthetic signals, an 
undamped sinusoid and a damped complex exponential. 
Both signals are first considered noise-free and then with 
added Gaussian noise for different signal-to-noise ratios. 
Of the undamped signal (FIG. 13a) 

f(x)=1.2 cos(197.5x)+0.4 cos(10V2x)+1.4 cos 
(101.52x), Osys2J 

with Nyquist rate M-400 and t=3, we depict three different 
frequency spectra. The spectrum shown in FIG. 13b is the 
true signal spectrum. The spectrum shown in FIG. 13c 
Suffers from the typical leakage, and the spectrum shown in 
FIG. 13d is obtained using de Prony's method on data 
undersampled at an r-fold of the Nyquist rate (r=29). FIG. 
13e shows the signal obtained from de Prony’s reconstruc 
tion based on the undersampled input. Using the approach 
according to an embodiment of the present invention on the 
same undersampled data, we are able to deliver the original 
spectrum shown in the top right image, at the price of 
sampling additionally at the 6 points (Srip) (), r 29, p=1. 
s=i, . . . . i-2 with i either 0, 1, 2 or 3 
When adding Gaussian noise to the undamped synthetic 

signal, the amplitudes and frequencies can still be retrieved 
accurately from the similarly (r=29) undersampled data. We 
find values 
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erro) = I.I. al 

|k-k 
err(k) = 2 

k2 

as in the table, 

SNR err(C) err(k) 

0.020 (34 dB) O.036 0.0277 
0.010 (40 dB) O.018 O.O146 
0.001 (60 dB) O.OO2 O.OO15 

where C. and k denote the true amplitude and frequency 
vectors, and d. and k denote the computed amplitude and 
frequency vectors of the noisy signal. The error vector 
norms are averaged over 1000 different random runs. 
Of the damped complex exponential signal (FIG. 14a) 

we show the amplitudes and damping factors using three 
techniques. The Nyquist rate is again M-400, but now t-6 
complex exponential terms are involved. In FIG. 14c we 
show the result of de Prony's method on the signal sub 
sampled at an r-fold of the Nyquist rate (r-21): the intro 
duced aliasing is obvious. In FIG. 14d we show the signal 
obtained from de Prony’s reconstruction based on this 
undersampled input. In FIG. 14b we show the result of using 
our technique according to an embodiment of the present 
invention when complementing the same undersampled data 
with the samples at (Sr--O) (), r 21, p=1. Si. . . . . i+5 where 
i is any integer between 0 and 7. The amplitudes, damping 
factors and frequencies are recovered with very high accu 
racy. We remark that many r-values relatively prime with M 
would have done the job (all up to 50 for instance, gave 
comparable results). 
When adding Gaussian noise to the damped synthetic 

signal, the amplitudes, damping factors and frequencies can 
be retrieved extremely accurately from the equally (r-21) 
undersampled data. We find values 

as in the table, 

SNR err(C) err(9 (k)) err(S (k)) 

0.020 (34 dB) O.O28 O.O103 O.OO32O3 
0.010 (40 dB) O.O14 O.OOSO OOOOO41 
0.001 (60 dB) O.OO1 O.OOOS OOOOOO4 

where C, 9 (k) and S(k) respectively denote the true ampli 
tude, damping factor and frequency vectors, and C., it (k) 
and S(k) respectively denote the computed amplitude, 
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damping factor and frequency vectors of the noisy signal. 
The error vector norms are averaged over 1000 different 
random runs. 

NOTATION LIST 

e-3-3e much less than 
. absolute value 
floor(...) integer part of a number (truncated) 
ceil(...) integer part of a number (rounded up) 
# e. cardinality of a set 
|- 2 Euclidean norm 
1 characteristic function 
A, B matrix 
Oi Oi, c, Otis weight factor in sparse model 
C complex numbers 

Yi, O, radial frequency 
d number of parameters of p, 

may be equal to its number of variables 
D diagonal matrix of weight factors 
6, T, phase angle 
f, f(X), f(x1, . . . , X) object under study that generates the data 
f s-th sample value off 
f, p sample taken at a points shifted over p/M 
(P (X), P (x1, ..., x) component in (sparse) model 
d(K) set of all p with k ranging over K. 
d, i-th component p, evaluated at the s-th 

sample point 
h, i, j, l, n indices 
H(0), H(I) t x t Hankel matrix with upper left element 

fo or f W 
i subset of {k'', ...,k} 
S(k) imaginary part of parameter k 
& single or vector parameter of p, 
k', (k'),...,k)) i-th single or vector parameter in the 

sparse Sum 
K admissible set for the single parameter 

k (d = 1) 
Ka admissible set for the vector parameter 

k (de 1) 
K dimension of the vector space spanned 

by d(K) 
lower triangular matrix 

W; (generalized) eigenvalue 
A diagonal matrix of eigenvalues 
m, M Nyquist sampling rate (or similar) 
mod in remainder after division by in 
N natural numbers including Zero 

() (argument of) primitive root of unity 
p; prime number 
3. number pi 
(Q rational numbers 
r magnifying factor 
R real numbers 

(k) real part of parameter k 
o identification shift 

, X) t-sparse linear combination of elements (p. 
cardinality of sparse model 

T overestimate for the cardinality t 
l O or 1 
V (generalized) eigenvector 
V Vandermonde matrix 
VT transpose of matrix V 
V-1 inverse of matrix V 
VI. infinity-norm of matrix V 
W generalized Vandermonde matrix 
WT transpose of matrix W 
X single variable of for p. 
xk monomial 
(x1, , Xa) vector variable off or p 
X, j-th coordinate of vector variable 

(x1, . . . . Xa) 
x . . . x d multinomial 
s(s), (s(s), , 3) S-th sample point 
Z integer numbers 
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The invention claimed is: 
1. A computer-based method for characterizing data 

dependent on at least one variable, in terms of a family of 
functions (p having a domain corresponding to said at least 
one variable and a codomain corresponding to said data, said 
family of functions sharing a common construction param 
eterized by at least one parameter k, and values of said 
family of functions satisfying a recurrence relation that can 
be expressed as a generalized eigenfunction relation; the 
method comprising: 

obtaining a magnifying factor r for controlling a spacing 
between elements in a finite sequence of sampling 
points S', j=0,1,2,... 21-1, wherein the data will be 
sampled, 

obtaining a finite sequence of measurements f=f(S), 
j=0, 1, 2, ..., 2t-1 of said data by Sampling said data 
in said finite sequence of sampling points, said Sam 
pling being sparse sampling, said finite sequence of 
sampling points being S controlled by said obtained 
magnifying factor and determined Such that the values 
(p(S) of the functions of said family of functions in 
said finite sequence of sampling points satisfy said 
recurrence relation, and 

outputting a property of the data satisfying 
f-X, 'C',(p,0(S), ji=0, 1, 2, ... , 2t-1 where the 
number of terms t, the support {k', ...,k}, and the 
nonzero coefficients C., . . . , C, are unknown, said 
outputting taking into account said finite sequence of 
measurements; 

wherein the method further comprises determining first 
sets of values of said at least one parameter k defining 
a Subset of said family of functions, said determining 
making use of said recurrence relation satisfied in said 
finite sequence of sampling points by determining the 
generalized eigenvalues of said generalized eigenfunc 
tion relation, and 

wherein the method comprises further sampling said data 
in a further finite sequence of sampling points such that 
a location of said further finite sequence of sampling 
points is at least also determined by a value of an 
identification shift for uniquely determining said Subset 
of said family of functions by calculating the intersec 
tions of said first sets of values and respective second 
sets of values of said at least one parameter k obtained 
from said further finite sequence of sampling points. 

2. The method according to claim 1, wherein said out 
putting a property of the data comprises outputting a repre 
sentation of the data based on the subset of said family of 
functions. 

3. The method according to claim 2, further comprising 
determining a set of weight factors for representing said data 
as a linear combination of said subset of said family of 
functions. 

4. The method according to claim 1, wherein function 
parameters defining functions of the determined Subset of 
said family of functions are at least not all integer. 

5. The method according to claim 1, wherein said mag 
nifying factor is an integer or a rational number. 

6. The method according to claim 5, wherein said mag 
nifying factor is different from one. 

7. The method according to claim 1, wherein said subset 
of said family of functions is a sparse Subset. 

8. The method according to claim 1, wherein selecting the 
magnifying factor comprises selecting the magnifying factor 
for controlling a numerical conditioning of said character 
izing of said data. 
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9. The method according to claim 1, wherein selecting the 
magnifying factor comprises selecting the magnifying factor 
for reducing the number of sampling points below less than 
dictated by the Nyquist rate. 

10. The method according to claim 1, wherein a cardi 
nality of said finite sequence of sampling points is imposed 
as a predetermined cardinality, and/or wherein a cardinality 
of said finite sequence of sampling points is probed for, 
and/or wherein the cardinality is determined iteratively. 

11. The method according to claim 1, wherein the method 
comprises performing a sparsity check by determining a 
numerical rank of a matrix or matrices constructed from said 
recurrence relation using the finite sequence of measure 
mentS. 

12. The method according to claim 1, in which said 
determining of said subset comprises applying an inverse 
application of a technique based on the Chinese remainder 
theorem. 

13. The method according to claim 1, wherein the method 
comprises performing a divide and conquer step. 

14. A nontransitory computer readable medium contain 
ing computer instructions stored therein for causing a com 
puter processor to perform a method according to claim 1. 

15. A device for characterizing data dependent on at least 
one variable, the device comprising: 

a processor comprising a numerical processing device, 
the numerical processing device adapted for obtaining, for 

the data to be characterized, a finite sequence of mea 
surements f, f(S).j=0,1,2,..., 2t-1 of said data by 
sampling said data in said finite sequence of sampling 
points S', j-0, 1,2,..., 21-1, said finite sequence of 
sampling points S being controlled by a magnifying 
factor r for controlling a spacing between elements in 
the finite sequence of sampling points S', j=0, 1, 
2. . . . .2t-1, and said finite sequence of sampling points 
S’ being determined such that the values (p.(SV) of the 
functions of a family of functions in said finite 
sequence of sampling points satisfy a recurrence rela 
tion that can be expressed as a generalized eigenfunc 
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tion relation, said sampling points being obtained 
through sparse sampling, and said family of functions 
having a domain corresponding to said at least one 
Variable and a codomain corresponding to said data and 
said family of functions sharing a common construction 
parameterized by at least one parameter k, the numeri 
cal processing device furthermore being adapted for 
determining a property of the data, 

a memory for storing the finite sequence of measure 
ments, and 

a display for outputting a property of the data satisfying 
f-X, 'C',(p() (S'). J–0, 1, 2, . . . , 2t-1, where the 
number of terms t, the support {k', ...,k}, and the 
nonzero coefficients O. . . . . C., are unknown, said 
outputting taking into account the finite sequence of 
measurements; 

wherein the numerical processing device is further 
adapted for determining first sets of values of said at 
least one parameter k defining a subset of said family 
of functions, said determining making use of said 
recurrence relation satisfied in said finite sequence of 
sampling points by determining the generalized eigen 
values of said generalized eigenfunction relation, and 

wherein the numerical processing device is further 
adapted for sampling said data in a further finite 
sequence of sampling points such that a location of said 
further finite sequence of sampling points is at least 
also determined by a value of an identification shift for 
uniquely determining said subset of said family of 
functions, by calculating the intersections of said first 
sets of values and respective second sets of values of 
said at least one parameter k obtained from said further 
finite sequence of sampling points. 

16. A device according to claim 15, the device further 
more comprising a sensor for obtaining one or more of the 
data to be characterized, the family of functions or the 
magnifying factor. 


