Research output

Article in Journal ()

A multi-state model to improve the design of an automated system to monitor the activity patterns of patients with bipolar disorder

Citation
Mohiuddin SG, Brailsford SC, James CJ, Amor JD, Blum JM, Crowe JA, Magill E & Prociow PA (2013) A multi-state model to improve the design of an automated system to monitor the activity patterns of patients with bipolar disorder, Journal of the Operational Research Society, 64 (3), pp. 372-383.

Abstract
This paper describes the role of mathematical modelling in the design and evaluation of an automated system of wearable and environmental sensors called PAM (Personalised Ambient Monitoring) to monitor the activity patterns of patients with bipolar disorder (BD). The modelling work was part of an EPSRC-funded project, also involving biomedical engineers and computer scientists, to develop a prototype PAM system. BD is a chronic, disabling mental illness associated with recurrent severe episodes of mania and depression, interspersed with periods of remission. Early detection of the onset of an acute episode is crucial for effective treatment and control. The aim of PAM is to enable patients with BD to self-manage their condition, by identifying the person's normal ‘activity signature’ and thus automatically detecting tiny changes in behaviour patterns which could herald the possible onset of an acute episode. PAM then alerts the patient to take appropriate action in time to prevent further deterioration and possible hospitalisation. A disease state transition model for BD was developed, using data from the clinical literature, and then used stochastically in a Monte Carlo simulation to test a wide range of monitoring scenarios. The minimum best set of sensors suitable to detect the onset of acute episodes (of both mania and depression) is identified, and the performance of the PAM system evaluated for a range of personalised choices of sensors.

Keywords
mental health; bipolar disorder; activity signatures; personalised ambient monitoring; Monte Carlo simulation

StatusPublished
AuthorsMohiuddin Syed Golam, Brailsford Sally C, James Christopher J, Amor James D, Blum Jesse Michael, Crowe John A, Magill Evan, Prociow Pawel A
Publication date03/2013
Publication date online09/05/2012
Date accepted by journal01/03/2012
PublisherPalgrave MacMillan
ISSN 0160-5682
LanguageEnglish

Journal
Journal of the Operational Research Society: Volume 64, Issue 3

© University of Stirling FK9 4LA Scotland UK • Telephone +44 1786 473171 • Scottish Charity No SC011159
My Portal