Research output

Article in Journal ()

The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils

Hartley I, Hopkins D, Sommerkorn M & Wookey P (2010) The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils, Soil Biology and Biochemistry, 42 (1), pp. 92-100.

Global warming in the Arctic may alter decomposition rates in Arctic soils and therefore nutrient availability. In addition, changes in the length of the growing season may increase plant productivity and the rate of labile C input below ground. We carried out an experiment in which inorganic nutrients (NH4NO3 and NaPO4) and organic substrates (glucose and glycine) were added to soils sampled from across the mountain birch forest-tundra heath ecotone in northern Sweden (organic and mineral soils from the forest. and organic soil only from the heath). Carbon dioxide production was then monitored continuously over the following 19 days. Neither inorganic N nor P additions substantially affected soil respiration rates when added separately. However, combined N and P additions stimulated microbial activity, with the response being greatest in the birch forest mineral soil (57% increase in CO2 production compared with 26% in the heath soil and 8% in the birch forest organic soil). Therefore, mineralisation rates in these soils may be stimulated if the overall nutrient availability to microbes increases in response to global change, but N deposition alone is unlikely to enhance decomposition. Adding either, or both, glucose and glycine increased microbial respiration. Isotopic separation indicated that the mineralisation of native soil organic matter (SOM) was stimulated by glucose addition in the heath soil and the forest mineral soil, but not in the forest organic soil. These positive 'priming' effects were lost following N addition in forest mineral soil, and following both N and P additions in the heath soil. In order to meet enhanced microbial nutrient demand, increased inputs of labile C from plants could stimulate the mineralisation of SOM, with the soil C stocks in the tundra-heath potentially most vulnerable.

Arctic; Climate change; Glucose; Glycine; Mountain birch; Nitrogen; Phosphorus; Priming; Soil respiration; Tundra-heath

Subject headings
Atmospheric carbon dioxide Environmental aspects; Global environmental change; Climatic changes Arctic regions; Climatic changes Environmental aspects

AuthorsHartley Iain, Hopkins David, Sommerkorn Martin, Wookey Philip
Publication date01/2010
Publication date online09/10/2009
ISSN 0038-0717

Soil Biology and Biochemistry: Volume 42, Issue 1 (2010-01)

© University of Stirling FK9 4LA Scotland UK • Telephone +44 1786 473171 • Scottish Charity No SC011159
My Portal