Research output

Article in Journal ()

The effect of spectral composition and light intensity on melatonin, stress and retinal damage in post-smolt Atlantic salmon, Salmo salar

Citation
Migaud H, Cowan M, Taylor J & Ferguson H (2007) The effect of spectral composition and light intensity on melatonin, stress and retinal damage in post-smolt Atlantic salmon, Salmo salar, Aquaculture, 270 (1-4), pp. 390-404.

Abstract
Metal halide lights are currently used as standard in commercial Atlantic salmon sea cages as a means of enhancing productivity through grilse inhibition. However, such systems create bright point light sources that are neither environment specific nor species specific and could potentially compromise fish welfare. Light emitting diodes (LEDs) are a new form of lighting technology currently being developed for the fish farming industry that can be tuned to environment and species sensitivities through narrow bandwidth outputs. However, prior to implementing these new high energy alternatives, any potential adverse effects must be determined in fish. The objectives of this study were thus (1) to determine the effect of increasing intensities of blue LED light (0.199-2.7 W m- 2, at 0.1 m from the light source) on light perception and stress response, and (2) to examine potential retinal damage under these conditions in post-smolt Atlantic salmon, Salmo salar. A white LED light was also tested, as well as a very high intensity metal halide positive control. Results demonstrated firstly that salmon perceived blue LED light (basal melatonin levels maintained) irrespective of intensity. Secondly, fish exposed to high intensity blue LED light showed an increase in plasma cortisol and glucose levels within 3 h, returning to a basal state 24 h post-light onset. This typical acute stress response was not observed in fish exposed to the white LED light and lower blue light intensities which could indicate differential sensitivities to spectral content of the light. No effects on the non-specific immune system (lysozyme activity) were observed. Finally, extensive histological examination of the retina from fish exposed to these various light treatments revealed no signs of damage. This demonstrates the efficiency of the adaptive mechanisms to light developed in fish.

Keywords
Salmo salar; Artificial light; LED; Stress; Retina damage; Photoreceptors

Subject headings
Atlantic salmon; Fishes Quality; Salmon fisheries Scotland Management

StatusPublished
AuthorsMigaud Herve, Cowan Mairi, Taylor John, Ferguson Hugh
Publication date09/2007
PublisherElsevier
ISSN 0044-8486
LanguageEnglish

Journal
Aquaculture: Volume 270, Issue 1-4 (2007)

© University of Stirling FK9 4LA Scotland UK • Telephone +44 1786 473171 • Scottish Charity No SC011159
My Portal