Research output

Article in Journal ()

Bacterial survival under extreme UV radiation: A comparative proteomics study of Rhodobacter sp., isolated from high altitude wetlands in Chile

Citation
Perez VA, Hengst MB, Kurte L, Dorador C, Jeffrey WH, Wattiez R, Molina V & Matallana-Surget S (2017) Bacterial survival under extreme UV radiation: A comparative proteomics study of Rhodobacter sp., isolated from high altitude wetlands in Chile, Frontiers in Microbiology, 8, Art. No.: 1173.

Abstract
Salar de Huasco, defined as a polyextreme environment, is a high altitude saline wetland in the Chilean Altiplano (3800 m.a.s.l.), permanently exposed to the highest solar radiation doses registered in the world. We present here the first comparative proteomics study of a photoheterotrophic bacterium, Rhodobacter sp., isolated from this remote and hostile habitat. We developed an innovative experimental approach using different sources of radiation (in situ sunlight and UVB lamps), cut-off filters (Mylar, Lee filters) and a high-throughput, label-free quantitative proteomics method to comprehensively analyze the effect of seven spectral bands on protein regulation. A hierarchical cluster analysis (HCA) of 40 common proteins revealed that all conditions containing the most damaging UVB radiation induced similar pattern of protein regulation compared with UVA and visible light spectral bands. Moreover, it appeared that the cellular adaptation of Rhodobacter sp. to osmotic stress encountered in the hypersaline environment from which it was originally isolated, might further a higher resistance to damaging UV radiation. Indeed, proteins involved in the synthesis and transport of key osmoprotectants, such as glycine betaine and inositol, were found in very high abundance under UV radiation compared to the dark control, suggesting the function of osmolytes as efficient reactive oxygen scavengers. Our study also revealed a RecA-independent response and a tightly regulated network of protein quality control involving proteases and chaperones to selectively degrade misfolded and/or damaged proteins.

Keywords
extreme environment; Proteomics; UV radiation; Chilean altiplano; Osmoprotectants

StatusPublished
AuthorsPerez Vilma A, Hengst Martha B, Kurte Lenka, Dorador Cristina, Jeffrey Wade H, Wattiez Ruddy, Molina Veronica, Matallana-Surget Sabine
Publication date26/06/2017
Publication date online26/06/2017
Date accepted by journal08/06/2017
PublisherFrontiers Media
ISSN 1664-302X
LanguageEnglish

Journal
Frontiers in Microbiology: Volume 8

© University of Stirling FK9 4LA Scotland UK • Telephone +44 1786 473171 • Scottish Charity No SC011159
My Portal