Research output

Article in Journal ()

Development and validation of a mixed tissue oligonucleotide DNA microarray for Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758)

Citation
Trumbic Z, Bekaert M, Taggart J, Bron J, Gharbi K & Mladineo I (2015) Development and validation of a mixed tissue oligonucleotide DNA microarray for Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758), BMC Genomics, 16, Art. No.: 1007.

Abstract
Background 

The largest of the tuna species, Atlantic bluefin tuna (Thunnus thynnus), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely a consequence of overfishing.T. thynnusaquaculture, referred to as fattening or farming, is a capture based activity dependent on yearly renewal from the wild. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. The development of such practices is today greatly assisted by large scale transcriptomic studies. 
Results 
We have used pyrosequencing technology to sequence a mixed-tissue normalised cDNA library, derived from adultT. thynnus. A total of 976,904 raw sequence reads were assembled into 33,105 unique transcripts having a mean length of 893 bases and an N50 of 870. Of these, 33.4% showed similarity to known proteins or gene transcripts and 86.6% of them were matched to the congeneric Pacific bluefin tuna (Thunnus orientalis) genome, compared to 70.3% for the more distantly related Nile tilapia (Oreochromis niloticus) genome. Transcript sequences were used to develop a novel 15K Agilent oligonucleotide DNA microarray forT. thynnusand comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes. Functional contrasts were strongest between gills and ovaries. Gills were particularly associated with immune system, signal transduction and cell communication, while ovaries displayed signatures of glycan biosynthesis, nucleotide metabolism, transcription, translation, replication and repair. 
Conclusions 
Sequence data generated from a novel mixed-tissueT. thynnuscDNA library provide an important transcriptomic resource that can be further employed for study of various aspects ofT. thynnusecology and genomics, with strong applications in aquaculture. Tissue-specific gene expression profiles inferred through the use of novel oligo-microarray can serve in the design of new and more focused transcriptomic studies for future research of tuna physiology and assessment of the welfare in a production environment.

Keywords
Thunnus thynnus; transcriptome; Microarray; Tissue gene expression, genome mapping

StatusPublished
AuthorsTrumbic Zeljka, Bekaert Michaël, Taggart John, Bron James, Gharbi Karim, Mladineo Ivona
Publication date25/11/2015
Publication date online25/11/2015
Date accepted by journal12/11/2015
PublisherBioMed Central
ISSN 1471-2164
LanguageEnglish

Journal
bmc Genomics: Volume 16

© University of Stirling FK9 4LA Scotland UK • Telephone +44 1786 473171 • Scottish Charity No SC011159
My Portal