Research output

Article in Journal ()

Shotgun redox proteomics: identification and quantitation of carbonylated proteins in the UVB resistant marine bacterium, Photobacterium angustum S14

Citation
Matallana-Surget S, Cavicchioli R, Fauconnier C, Wattiez R, Baptiste L, Joux F, Raftery M & Lebaron P (2013) Shotgun redox proteomics: identification and quantitation of carbonylated proteins in the UVB resistant marine bacterium, Photobacterium angustum S14, PLoS ONE, 8 (7), Art. No.: e68112.

Abstract
UVB oxidizes proteins through the generation of reactive oxygen species. One consequence of UVB irradiation is carbonylation, the irreversible formation of a carbonyl group on proline, lysine, arginine or threonine residues. In this study, redox proteomics was performed to identify carbonylated proteins in the UVB resistant marine bacterium Photobacterium angustum. Mass-spectrometry was performed with either biotin-labeled or dinitrophenylhydrazide (DNPH) derivatized proteins. The DNPH redox proteomics method enabled the identification of 62 carbonylated proteins (5% of 1221 identified proteins) in cells exposed to UVB or darkness. Eleven carbonylated proteins were quantified and the UVB/dark abundance ratio was determined at both the protein and peptide levels. As a result we determined which functional classes of proteins were carbonylated, which residues were preferentially modified, and what the implications of the carbonylation were for protein function. As the first large scale, shotgun redox proteomics analysis examining carbonylation to be performed on bacteria, our study provides a new level of understanding about the effects of UVB on cellular proteins, and provides a methodology for advancing studies in other biological systems.

StatusPublished
AuthorsMatallana-Surget Sabine, Cavicchioli Rick, Fauconnier Charles, Wattiez Ruddy, Baptiste Leroy, Joux Fabien, Raftery Mark, Lebaron Philippe
Publication date09/07/2013
Publication date online09/07/2013
Date accepted by journal25/05/2013
PublisherPublic Library of Science
ISSN 1932-6203
LanguageEnglish

Journal
Plos one: Volume 8, Issue 7

© University of Stirling FK9 4LA Scotland UK • Telephone +44 1786 473171 • Scottish Charity No SC011159
My Portal