Research output

Article in Journal ()

Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation

Citation
Hamilton DL, Philp A, MacKenzie MG, Patton A, Towler MC, Gallagher IJ, Bodine SC & Baar K (2014) Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation, American Journal of Physiology - Endocrinology and Metabolism, 307 (4), pp. E365-E373.

Abstract
The goal of the current work was to profile positive (mTORC1 activation, autocrine/paracrine growth factors) and negative [AMPK, unfolded protein response (UPR)] pathways that might regulate overload-induced mTORC1 (mTOR complex 1) activation with the hypothesis that a number of negative regulators of mTORC1 will be engaged during a supraphysiological model of hypertrophy. To achieve this, mTORC1- IRS-1/2 signaling, BiP/CHOP/IRE1, and AMPK activation were determined in rat plantaris muscle following synergist ablation (SA). SA resulted in significant increases in muscle mass of 4% per day throughout the 21 days of the experiment. The expression of the insulin-like growth factors (IGF) were high throughout the 21st day of overload. However, IGF signaling was limited, since IRS-1 and -2 were undetectable in the overloaded muscle from day 3 to day 9. The decreases in IRS-1/2 protein were paralleled by increases in GRB10 Ser501/503 and S6K1 Thr389 phosphorylation, two mTORC1 targets that can destabilize IRS proteins. PKB Ser473 phosphorylation was higher from 3– 6 days, and this was associated with increased TSC2 Thr939 phosphorylation. The phosphorylation of TSC2 Thr1345 (an AMPK site) was also elevated, whereas phosphorylation at the other PKB site, Thr1462, was unchanged at 6 days. In agreement with the phosphorylation of Thr1345, SA led to activation of AMPK1 during the initial growth phase, lasting the first 9 days before returning to baseline by day 12. The UPR markers CHOP and BiP were elevated over the first 12 days following ablation, whereas IRE1 levels decreased. These data suggest that during supraphysiological muscle loading at least three potential molecular brakes engage to downregulate mTORC1. mT

Keywords
mTORC1; S6K1; AMPK; hypertrophy; skeletal muscle

StatusPublished
AuthorsHamilton David Lee, Philp Andrew, MacKenzie Matthew G, Patton Amy, Towler Mhairi C, Gallagher Iain J, Bodine Sue C, Baar Keith
Publication date15/08/2014
Publication date online24/06/2014
Date accepted by journal19/06/2014
PublisherAmerican Physiological Society
ISSN 0193-1849
LanguageEnglish

Journal
American Journal of Physiology - Endocrinology and Metabolism: Volume 307, Issue 4 (2014)

© University of Stirling FK9 4LA Scotland UK • Telephone +44 1786 473171 • Scottish Charity No SC011159
My Portal