Research output

Article in Journal ()

Cloning, Functional Characterization and Nutritional Regulation of Delta 6 Fatty Acyl Desaturase in the Herbivorous Euryhaline Teleost Scatophagus Argus

Citation
Xie D, Chen F, Lin S, Wang S, You C, Monroig O, Tocher DR & Li Y (2014) Cloning, Functional Characterization and Nutritional Regulation of Delta 6 Fatty Acyl Desaturase in the Herbivorous Euryhaline Teleost Scatophagus Argus, PLoS ONE, 9 (3), Art. No.: e90200.

Abstract
Marine fish are generally unable or have low ability for the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, with some notable exceptions including the herbivorous marine teleost Siganus canaliculatus in which such a capability was recently demonstrated. To determine whether this is a unique feature of S. canaliculatus or whether it is common to the herbivorous marine teleosts, LC-PUFA biosynthetic pathways were investigated in the herbivorous euryhaline Scatophagus argus. A putative desaturase gene was cloned and functionally characterized, and tissue expression and nutritional regulation were investigated. The full-length cDNA was 1972 bp, containing a 1338 bp open-reading frame encoding a polypeptide of 445 amino acids, which possessed all the characteristic features of fatty acyl desaturase (Fad). Functional characterization by heterologous expression in yeast showed the protein product of the cDNA efficiently converted 18:3n-3 and 18:2n-6 to 18:4n-3 and 18:3n-6, respectively, indicating D6 desaturation activity. Quantitative real-time PCR showed that highest D6 fad mRNA expression was detected in liver followed by brain, with lower expression in other tissues including intestine, eye, muscle, adipose, heart kidney and gill, and lowest expression in stomach and spleen. The expression of D6 fad was significantly affected by dietary lipid and, especially, fatty acid composition, with highest expression of mRNA in liver of fish fed a diet with a ratio of 18:3n-3/18:2n-6 of 1.72:1. The results indicated that S. argus may have a different LC-PUFA biosynthetic system from S. canaliculatus despite possessing similar habitats and feeding habits suggesting that LC-PUFA biosynthesis may not be common to all marine herbivorous teleosts.

Keywords
LC-PUFA; biosynthesis; EPA; DHA; metabolism; fish; teleost

StatusPublished
AuthorsXie Dizhi, Chen Fang, Lin Siyuan, Wang Shuqi, You Cuihong, Monroig Oscar, Tocher Douglas R, Li Yuanyou
Publication date03/03/2014
Date accepted by journal27/04/2014
PublisherPLoS
ISSN 1932-6203
LanguageEnglish

Journal
Plos one: Volume 9, Issue 3 (MAR 3 2014)

© University of Stirling FK9 4LA Scotland UK • Telephone +44 1786 473171 • Scottish Charity No SC011159
My Portal